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Graph isomorphisms

Let G, H be graphs

e A bijection ¢: Vg — Vy is an isomorphism, if
Vu,veVs:{u v} e€E(G) = {o(u) o(v)} € E(H)

e If such a ¢ exists, G and H are isomorphic (G £ H).
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Graph isomorphisms

Let G, H be graphs
e A bijection ¢: Vg — Vy is an isomorphism, if
Vu,veVe:{u v} eE(G) = {ou) ¢(v)} €E(H)

e If such a ¢ exists, G and H are isomorphic (G £ H).

e Foragraph G (w.l.o.g. Vg={1,...,n})and o €S,
let ¢(G) be the graph given by

Vo6) :={o(v)|veVs}
Eo(6) = {{@(u), p(V)} | {u, v} € Eg}
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Graph isomorphisms

Let G, H be graphs (colored with cg, cH)
e A bijection ¢: Vg — Vy is an isomorphism, if
Vu,veVs:{u v} €eE(G) & {p(u), p(v)} € E(H)
(and Vv € Vi : cG(Vv) = cH(p(Vv))).

e If such a ¢ exists, G and H are isomorphic (G = H).

e Foragraph G (w.l.o.g. Vg={1,...,n})and o €S,
let ¢(G) be the graph given by

Vo) '={e(v)|veVs}
Eo(6) = {{@(u), ()} | {u, v} € Eg}
Co6)(V) :=cc(9™H(V))
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Invariants and canonical labelings

Let G be a graph class and f a function defined on g.

e fis an invariant for g, if
VG,HeG:G=H= f(G)=f(H).

k-Tree Isomorphism
is L-Complete

Johannes Kébler,
Sebastian Kuhnert

Introduction

Isomorphisms and
Canonization

k-trees
Known Results

Canonizing k-trees

Tree
representation

The FL algorithm

Summary




Invariants and canonical labelings

Let G be a graph class and f a function defined on g.

e fis an invariant for g, if
VG,HeG:G=H= f(G)=f(H).

e f is a complete invariant for g, if
VG, HeG:G=H & f(G) =f(H).
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Invariants and canonical labelings

Let G be a graph class and f a function defined on g.

e fis an invariant for g, if
VG,HeG:G=H= f(G)=f(H).

e f is a complete invariant for g, if
VG, HeG:G=H & f(G) =f(H).
e fis a canonization for G,

if f is a complete invariant with VG € G : f(G) = G.
f(G) is called canonical form of G.
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Invariants and canonical labelings

Let G be a graph class and f a function defined on g.

e fis an invariant for g, if
VG,HeG:G=H= f(G)=f(H).

e f is a complete invariant for g, if
VG, HeG:G=H & f(G) =f(H).

e fis a canonization for G,
if f is a complete invariant with VG € G : f(G) = G.
f(G) is called canonical form of G.
Assume w.l.0.g. that Vg = {1,...,n}.
e A function ¢: G —» S, that maps G — ¢¢
is a canonical labeling for G,
if G — Ys(G) is a canonization for G.
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k-trees

k-Tree Isomorphism

The class of trees can be defined inductively: is L-Complete
o . Johannes Kébler,
e A single vertex is a tree. Sebastian Kuhnert

e If G is a tree, the following construction
yields a tree G’:

e choose a vertex u in G and

Introduction

e connect u with a new vertex v: Isomorphisms and
- Canonization
VG’ = VG U {V} k»atreoes -
EG/ H= EGU{{U, V}} Known Results
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k-trees
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The class of k-trees can be defined inductively: is L-Complete
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k-trees

Definition
k-Tree Isomorphism

The class of k-trees can be defined inductively: is L-Complete

e A k-Clique is a k-tree. depastian Kuhner
e If G is a k-tree, the following construction
yields a k-tree G’:

e choose a k-Clique C in G and

Introduction

e connect C with a new vertex v: Isomorphisms and
. Canonization
VG' = VG U {V} k»atreoes i
EG/ = EG U {{C’ V} | C € C} Known Results
, Canonizing k-trees
Partial k-trees are subgraphs of k-trees. Tree

representation
The FL algorithm

Summary

e Partial 1-trees are forests.
e G is a partial k-tree iff its tree width is < k.
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Known Results

Tree isomorphism and canonization

k-Tree Isomorphism

e In time O(n) [Aho, Hopcroft, Ullman 74] is L-Complete
e In NC [Miller, Reif 91]  [uistidoyit
e INL [Lindell 921

e Complete for L [Jenner et al. 03]
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Known Results

Tree isomorphism and canonization

k-Tree Isomorphism

e In time O(n) [Aho, Hopcroft, Ullman 74] is L-Complete
e InNC [Miller, Reif 91] [kt
e InL [Lindell 92]
e Complete for L [Jenner et al. 03]
Introduction
Isomorphisms and
el
e In time O(nk+4-5) [Bodlaender 90] Canonizing k-trees
e For k=2 and 3 in time O(nlogn) Tepresentation
[Arnborg, Proskurowski 92] s:f::;ya'g"”thm
e InTC! [Grohe, Verbitsky 06]
e Canonizing in TC? [Kdbler, Verbitsky 08]

For k =2 complete for . [Arvind, Das, Kébler 08]
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Tree isomorphism and canonization
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Known Results

Tree isomorphism and canonization

k-Tree Isomorphism

e In time O(n) [Aho, Hopcroft, Ullman 74] is L-Complete
e In NC [Miller, Reif 91] [kt
e INL [Lindell 92]
e Complete for L [Jenner et al. 03]
Introduction
Isomorphisms and
=
o In AC? [Greco, Sekharan, Sridhar 02] Canonizing k-trees
e In StUL, hard for L [Arvind, Das, Kobler 07] fepresentaton

The FL algorithm

e (For k-paths: Complete for L) Summary




Known Results

Tree isomorphism and canonization

k-Tree Isomorphism

e In time O(n) [Aho, Hopcroft, Ullman 74] is L-Complete
e In NC [Miller, Reif 91] [kt
e InL [Lindell 92]
e Complete for L [Jenner et al. 03]
Introduction
Isomorphisms and
=
o In AC? [Greco, Sekharan, Sridhar 02] Canonizing k-trees
e In StUL, hard for L [Arvind, Das, Kobler 07] }hef;fzf;:g:hm
e (For k-paths: Complete for L) SR

e Complete for L
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Outline of our algorithm

k-tree G ——— tree representation T(G)
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Outline of our algorithm

k-tree G ——— tree representation T(G)

variant of
Lindell's
algorithm

canon of G canon of T(G)

Requirements for this approach:
e Isomorphic k-trees must have
isomorphic tree representations

e T(G) must contain enough information
to reconstruct an isomorphic copy of G

e Both construction and reconstruction
must be possible in logspace
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Tree representation of k-trees

Let G be a k-tree.
The tree representation T(G) is defined by

Vr(6) := {M S Vs |Mis a k- or (k + 1)-clique in G}
ErG) = {{M1, M2} C Vr(G) |[M1 & M2}
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Tree representation of a 2-tree
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Tree representation of a 2-tree
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Tree representation of a 2-tree
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e T(G) is a tree.
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Tree representation of a 2-tree
k-Tree Isomorphism

Example
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Tree representation of a 2-tree
k-Tree Isomorphism

Example
is L-Complete

G: T(G)' Johannes Kobler,
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Known Results
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e T(G) is a tree.




Tree representation of a 2-tree
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Tree representation of a 2-tree

G: T(G):

C (5 3)

e T(G) is a tree.
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Tree representation of a 2-tree

Example

G:

2]

e T(G) is a tree.

e For any v € Vg, the nodes of T(G) that contain v
form a subtree of T(G).
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The kernel of a k-tree

For any k-tree G, the center of
T(G) is a single node.
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The kernel of a k-tree

Fact

For any k-tree G, the center of
T(G) is a single node.

Definition
For a k-tree G, the kernel ker(G)

is the clique corresponding to the
center node of T(G).

e The kernel of a k-tree was
introduced before
[Greco, Sekharan, Sridhar 02]
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The kernel of a k-tree

Fact .
k-Tree Isomorphism

For any k-tree G, the center of is L-Complete
[ i h bl :
T(G) is a single node. Sebastian Kuhnert

For a k-tree G, the kernel ker(G) 0
is the clique corresponding to the Isomorphisms and

Canonization

center node of T(G). k-trees

e Known Results

Canonizing k-trees

Introduction

e The kernel of a k-tree was B
introduced before representation

. The FL algorithm
[Greco, Sekharan, Sridhar 02] Summary

e Note that ker(G) is either
a k- or a (k+ 1)-clique. %%%%




The kernel of a k-tree

Fa Ct k-Tree Isomorphism
For any k-tree G, the center of s L-complete
T(G) is a single node. depastian Kuhner
Definition

For a k-tree G, the kernel ker(G) 0 Introduction

is the clique corresponding to the G E:
center node of T(G). k-trees

Known Results

Canonizing k-trees

e The kernel of a k-tree was B
introduced before fhj;fgf;jg:hm
[Greco, Sekharan, Sridhar 02]

e Note that ker(G) is either
a k- or a (k + 1)-clique.

e We define k’ :=||ker(G)||.

Summary
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The need for colors
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... but their tree representations are
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The need for colors
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e These 2 graphs are non-isomorphic ...
... but their tree representations are

e Thus it is impossible to reconstruct an isomorphic
copy of G from an isomorphic copy of T(G)

k-Tree Isomorphism
is L-Complete

Johannes Kébler,
Sebastian Kuhnert

Introduction

Isomorphisms and
Canonization

k-trees
Known Results

Canonizing k-trees

Tree
representation

The FL algorithm

Summary




The need for colors

- _ .
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e These 2 graphs are non-isomorphic ...
but their tree representations are

e Thus it is impossible to reconstruct an isomorphic
copy of G from an isomorphic copy of T(G)

e Solution: Color the nodes of T(G)
to fully encode the structure of G
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Coloring the tree representation

Let G be a k-tree with Vg ={1,...,n} and kitee Isomorphism
K:=ker(G)={1,...,k’} and let ve Vg. Johannes Kobler,

Sebastian Kuhnert

e The level of v is

(V) := min {d7(G)(K, M) | M € Vr(G), v € M}

Introduction

Now let m € Si» be a permutation on K. tsomorphiams and
A Canonization
e The color of v is k-trees
Known Results
T[(V) if VvV E ke r(G) Canonizing k-trees
CT[(V) = , . Tree
l(V) + k OtherWlse representation

The FL algorithm

Summary

e The colored tree representation T(G, m) of G
is T(G) with K as root and each M € V() colored by

cn(M) := {cn(v) |ve M}




Colored tree representations
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Colored tree representations

° ker(G) = {1, 2}, k/ =2 k-Tree Isomorphism

is L-Complete

O l(l) = 1(2) = 0 Johanpes Kodbler,
l(3) — l(5) — 1 Sebastian Kuhnert
(4)=U6)=3

Introduction
@ Isomoljphi‘sms and
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w % @ k-trees
@ Known Results
(5 2
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Colored tree representations

s ker(G)={1 2} k=2 Rl

e (1)=1(2)=0 Johannes Kber,
1(3) = l(5) = 1 Sebastian Kuhnert
I(4)=1((6)=3

g@% e Use m=(12)
e For v € ker(G): Introduction
%@& @ cn(v) = m(v) S
@% 4 cr(1) =2

Cn(Z) =1 Canonizing k-trees

Tree
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Summary
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Colored tree representations

ker(G)={1,2},k'=2

(D=12)=0
(3)=I[(5)=1
(4)=16)=3
Use m=(12)

For v € ker(G):
cr(v) =mn(v)
cp(l)=2

For v & ker(G):
ca(v)=k'+ (V)
cn(3)=cq(5)=3
cn(4) =cn(6)=5

k-Tree Isomorphism
is L-Complete

Johannes Kébler,
Sebastian Kuhnert

Introduction

Isomorphisms and
Canonization

k-trees
Known Results

Canonizing k-trees

Tree
representation

The FL algorithm

Summary




Colored tree representations

{2,3,5}

2RI ‘ 3.5
{2,‘5} g %
{2,3,5} B) 23}

\@ (1"13} @/{1,2,3}
{3 5}/ E / @% &\{1 3}
’ {2,3} {1,2} ’

{1,3}

ker(G)={1,2}, k' =2
(1)=12)=0
(3)=I[(5)=1
(4)=16)=3
Use m=(12)

For v € ker(G):
cr(v) =m(v)
cn(l)=2

For v & ker(G):
ca(v)=k'+ (V)
cn(3)=cn(5)=3
cn(4)=cq(6)=5
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Colored tree representations

25} Q/T/S} {35
12,5} ' ‘

{2,3,5} : —{2,3}

\‘ (1"13} '/{1,2,3}
{3 5}/ i / ‘\ '\{1 3}
’ {2,3} {1,2} g

{1,3}

ker(G)={1,2}, k' =2
(1)=12)=0
(3)=I[(5)=1
(4)=16)=3
Use m=(12)

For v € ker(G):
cr(v) =m(v)
cp(l)=2

For v & ker(G):
ca(v)=k'+ (V)
cn(3)=cn(5)=3
cn(4)=cn(6)=5

e From an isomorphic copy of T(G, m) an
isomorphic copy of G can be reconstructed
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Colored tree representations

k-Tree Isomorphism
is L-Complete

Johannes Kébler,
Sebastian Kuhnert

25} Q/T/S} {35
{2,‘5} ' ‘

235 @D (2.3}

\‘ (L‘Zlg} ‘/{1,2,3}
{3 5}/ i / ‘\ '\{1 3}
’ {2,3} {1,2} g

{1,3}
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e From an isomorphic copy of T(G, m) an
isomorphic copy of G can be reconstructed




Facts on T(G, m)

For a k-tree G and a permutation m on ker(G),
T(G, m) can be computed in FL.
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is L-Complete

Johannes Kébler,
Sebastian Kuhnert

Introduction

Isomorphisms and
Canonization

k-trees
Known Results

Canonizing k-trees

Tree
representation

The FL algorithm

Summary




Facts on T(G, m)

Lemma

For a k-tree G and a permutation m on ker(G),
T(G, m) can be computed in FL.

Lemma

Let G, H be k-trees such that G = H via ¢,
V(G)=V(H)={1,...,n} and ker(G) = ker(H) =K.
Then also T(G, m1) = T(H, mp) via o,

provided that m; (u) = ma(@(u)) for all u € K.

k-Tree Isomorphism
is L-Complete
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Facts on T(G, m)

Lemma

For a k-tree G and a permutation m on ker(G),
T(G, m) can be computed in FL.

Lemma

Let G, H be k-trees such that G = H via ¢,
V(G)=V(H)={1,...,n} and ker(G) = ker(H) =K.
Then also T(G, m1) = T(H, mp) via o,

provided that m; (u) = ma(@(u)) for all u € K.

Lemma
Let G be a k-tree and let m be a permutation on the
kernel K of G.
e From any colored tree T = T(G, ), an isomorphic
copy G’ of G can be computed in FL.
e It is possible to compute an isomorphism

between G and G’ from any given isomorphism
between T(G, ) and T in FL.
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Canonical labeling for k-trees

Th eO re m k-Tree Isomorphism
Given a k-tree G with Vg = {1, ..., n} and kernel Jo:n::::;::
K={1,...,k’}, a canonical labeling Y € S, can be SelzERilE (limar

computed in FL.

The algorithm

Introduction

Isomorphisms and

1 foreach me Sy do Canonization
k-trees
2 CompUte T(G’ T[) . . Known Results
3 compute a canonical labeling ¢r1(G,m Of -
T(G, T[) Tree :
. representation
4 choose m1 € Syr such that @r1G,n)(T(G, m1)) is The FL algorithm
mlnlma-l. Summary

(%,

reconstruct a labeling ¢g of G from @1, m
return ¢s as canonical labeling

(o)}




Our results

Corollary

For any fixed k,
e k-tree canonization is in FL. and
e k-tree isomorphism is in L.

Corollary

For any fixed k,

e computing a generating set of Aut(G)
for a given k-tree G is in FL,

e computing a canonical labeling coset
for a given k-tree is in FL, and

e k-tree automorphism is L-complete.
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is L-Complete
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Summary and open problems

e Canonical labeling for k-trees can be reduced
in logspace to canonical labeling for trees

e k-tree isomorphism is L-complete

e For k-trees, a canonical labeling coset
can be computed in logspace

k-Tree Isomorphism
is L-Complete
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Summary and open problems

Canonical labeling for k-trees can be reduced
in logspace to canonical labeling for trees

k-tree isomorphism is L-complete

For k-trees, a canonical labeling coset
can be computed in logspace

What about partial k-tree isomorphism?
« Can the upper bound of TC! be improved?
(e.g. toNL, ®L, L)
e Is it hard for NL or ®L?
Can our approach be generalized?
« To hookup classes that are not isomorphism
complete, c.f. [Klawe, Corneil, Proskurowski 82]

e To chordal graphs with small s-components,
c.f. [Toda 06]
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is L-Complete
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k-Tree Isomorphism
is L-Complete
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Thank You!
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