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Graph isomorphisms

Definition
Let G,H be graphs

(colored with cG, cH)

• A bijection φ : VG → VH is an isomorphism, if
∀, ∈ VG : {,} ∈ E(G)⇔ {φ(), φ()} ∈ E(H)

(and ∀ ∈ VG : cG() = cH(φ())).

• If such a φ exists, G and H are isomorphic (G ∼= H).

• For a graph G (w. l. o. g. VG = {1, . . . , n}) and φ ∈ Sn
let φ(G) be the graph given by

Vφ(G) := {φ() |  ∈ VG}

Eφ(G) :=
¦

{φ(), φ()}
�

� {,} ∈ EG
©

cφ(G)() := cG(φ−1())



k-Tree Isomorphism
is L-Complete

Johannes Köbler,
Sebastian Kuhnert

Introduction

É Isomorphisms and
Canonization

k-trees

Known Results

Canonizing k-trees

Tree
representation

The FL algorithm

Summary

Graph isomorphisms

Definition
Let G,H be graphs

(colored with cG, cH)

• A bijection φ : VG → VH is an isomorphism, if
∀, ∈ VG : {,} ∈ E(G)⇔ {φ(), φ()} ∈ E(H)

(and ∀ ∈ VG : cG() = cH(φ())).

• If such a φ exists, G and H are isomorphic (G ∼= H).
• For a graph G (w. l. o. g. VG = {1, . . . , n}) and φ ∈ Sn

let φ(G) be the graph given by

Vφ(G) := {φ() |  ∈ VG}

Eφ(G) :=
¦

{φ(), φ()}
�

� {,} ∈ EG
©

cφ(G)() := cG(φ−1())



k-Tree Isomorphism
is L-Complete

Johannes Köbler,
Sebastian Kuhnert

Introduction

É Isomorphisms and
Canonization

k-trees

Known Results

Canonizing k-trees

Tree
representation

The FL algorithm

Summary

Graph isomorphisms

Definition
Let G,H be graphs (colored with cG, cH)

• A bijection φ : VG → VH is an isomorphism, if
∀, ∈ VG : {,} ∈ E(G)⇔ {φ(), φ()} ∈ E(H)
(and ∀ ∈ VG : cG() = cH(φ())).

• If such a φ exists, G and H are isomorphic (G ∼= H).
• For a graph G (w. l. o. g. VG = {1, . . . , n}) and φ ∈ Sn

let φ(G) be the graph given by

Vφ(G) := {φ() |  ∈ VG}

Eφ(G) :=
¦

{φ(), φ()}
�

� {,} ∈ EG
©

cφ(G)() := cG(φ−1())



k-Tree Isomorphism
is L-Complete

Johannes Köbler,
Sebastian Kuhnert

Introduction

É Isomorphisms and
Canonization

k-trees

Known Results

Canonizing k-trees

Tree
representation

The FL algorithm

Summary

Invariants and canonical labelings

Definition
Let G be a graph class and ƒ a function defined on G.

• ƒ is an invariant for G, if

∀G,H ∈ G : G ∼= H⇒ ƒ (G) = ƒ (H) .

• ƒ is a complete invariant for G, if

∀G,H ∈ G : G ∼= H⇔ ƒ (G) = ƒ (H).

• ƒ is a canonization for G,
if ƒ is a complete invariant with ∀G ∈ G : ƒ (G) ∼= G.
ƒ (G) is called canonical form of G.

Assume w. l. o. g. that VG = {1, . . . , n}.

• A function ψ : G → Sn that maps G 7→ ψG
is a canonical labeling for G,
if G 7→ ψG(G) is a canonization for G.
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k-trees

Definition
The class of trees can be defined inductively:

• A single vertex is a tree.
• If G is a tree, the following construction

yields a tree G′:
• choose a vertex  in G and
• connect  with a new vertex :

VG′ := VG ∪ {}
EG′ := EG ∪

�

{,}
	

Partial k-trees are subgraphs of k-trees.

Example
• Partial 1-trees are forests.
• G is a partial k-tree iff its tree width is ≤ k.
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Tree isomorphism and canonization
• In time O(n) [Aho, Hopcroft, Ullman 74]
• In NC [Miller, Reif 91]
• In L [Lindell 92]
• Complete for L [Jenner et al. 03]
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Known Results

Tree isomorphism and canonization
• In time O(n) [Aho, Hopcroft, Ullman 74]
• In NC [Miller, Reif 91]
• In L [Lindell 92]
• Complete for L [Jenner et al. 03]

Partial k-tree isomorphism
• In time O(nk+4.5) [Bodlaender 90]
• For k = 2 and 3 in time O(n logn)

[Arnborg, Proskurowski 92]
• In TC1 [Grohe, Verbitsky 06]
• Canonizing in TC2 [Köbler, Verbitsky 08]
• For k = 2 complete for L [Arvind, Das, Köbler 08]
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tree representation T(G)

canon of T(G)

variant of
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algorithm

Requirements for this approach:
• Isomorphic k-trees must have

isomorphic tree representations
• T(G) must contain enough information

to reconstruct an isomorphic copy of G
• Both construction and reconstruction

must be possible in logspace
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Tree representation of k-trees

Definition
Let G be a k-tree.
The tree representation T(G) is defined by

VT(G) :=
¦

M ⊆ VG
�

�M is a k- or (k + 1)-clique in G
©

ET(G) :=
¦

{M1,M2} ⊆ VT(G)
�

�M1 (M2
©
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Tree representation of a 2-tree

Example

C

C

C

C

C

G: T(G):

1 2

3

4

5

6

7

8

1 2

3
1 21
3 3

2

4
1 2

1
4 4

2
1
5 3

5
1

5 3

1
6 46

1

6 4

5
7 17

5

7 1

8
6 4

6
8 8

4

• T(G) is a tree.
• For any  ∈ VG, the nodes of T(G) that contain 

form a subtree of T(G).
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Fact
For any k-tree G, the center of
T(G) is a single node.

Definition
For a k-tree G, the kernel ker(G)
is the clique corresponding to the
center node of T(G).

• The kernel of a k-tree was
introduced before
[Greco, Sekharan, Sridhar 02]

• Note that ker(G) is either
a k- or a (k + 1)-clique.

• We define k′ := ‖ker(G)‖.
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• These 2 graphs are non-isomorphic . . .

. . . but their tree representations are
• Thus it is impossible to reconstruct an isomorphic

copy of G from an isomorphic copy of T(G)
• Solution: Color the nodes of T(G)

to fully encode the structure of G
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Coloring the tree representation

Definition
Let G be a k-tree with VG = {1, . . . , n} and
K := ker(G) = {1, . . . , k′} and let  ∈ VG.

• The level of  is

() :=min
¦

dT(G)(K,M)
�

�M ∈ VT(G),  ∈ M
©

Now let π ∈ Sk′ be a permutation on K.
• The color of  is

cπ() :=

¨

π() if  ∈ ker(G)
() + k′ otherwise

• The colored tree representation T(G,π) of G
is T(G) with K as root and each M ∈ VT(G) colored by

cπ(M) :=
¦

cπ()
�

�  ∈ M
©
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• ker(G) = {1,2}, k′ = 2
• (1) = (2) = 0
(3) = (5) = 1
(4) = (6) = 3

• Use π = (12)
• For  ∈ ker(G):
cπ() = π()
cπ(1) = 2
cπ(2) = 1

• For  /∈ ker(G):
cπ() = k′ + ()
cπ(3) = cπ(5) = 3
cπ(4) = cπ(6) = 5

• From an isomorphic copy of T(G,π) an
isomorphic copy of G can be reconstructed
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Summary

Facts on T(G,π)
Lemma
For a k-tree G and a permutation π on ker(G),
T(G,π) can be computed in FL.

Lemma
Let G,H be k-trees such that G ∼= H via φ,
V(G) = V(H) = {1, . . . , n} and ker(G) = ker(H) = K.
Then also T(G,π1) ∼= T(H,π2) via φ,
provided that π1() = π2(φ()) for all  ∈ K.

Lemma
Let G be a k-tree and let π be a permutation on the
kernel K of G.

• From any colored tree T ∼= T(G,π), an isomorphic
copy G′ of G can be computed in FL.

• It is possible to compute an isomorphism
between G and G′ from any given isomorphism
between T(G,π) and T in FL.
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Canonical labeling for k-trees

Theorem
Given a k-tree G with VG = {1, . . . , n} and kernel
K = {1, . . . , k′}, a canonical labeling ψG ∈ Sn can be
computed in FL.

The algorithm
1 foreach π ∈ Sk′ do
2 compute T(G,π)
3 compute a canonical labeling φT(G,π) of

T(G,π)
4 choose π1 ∈ Sk′ such that φT(G,π1)(T(G,π1)) is

minimal
5 reconstruct a labeling ψG of G from φT(G,π)
6 return ψG as canonical labeling
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Our results

Corollary
For any fixed k,

• k-tree canonization is in FL and
• k-tree isomorphism is in L.

Corollary
For any fixed k,

• computing a generating set of At(G)
for a given k-tree G is in FL,

• computing a canonical labeling coset
for a given k-tree is in FL, and

• k-tree automorphism is L-complete.
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Summary and open problems

• Canonical labeling for k-trees can be reduced
in logspace to canonical labeling for trees

• k-tree isomorphism is L-complete
• For k-trees, a canonical labeling coset

can be computed in logspace

• What about partial k-tree isomorphism?
• Can the upper bound of TC1 be improved?

(e. g. to NL, ⊕L, L)
• Is it hard for NL or ⊕L?

• Can our approach be generalized?
• To hookup classes that are not isomorphism

complete, c. f. [Klawe, Corneil, Proskurowski 82]
• To chordal graphs with small s-components,

c. f. [Toda 06]
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