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We present a logspace algorithm that constructs a canonical intersection model
for a given proper circular-arc graph, where canonical means that isomorphic graphs
receive identical models. This implies that the recognition and the isomorphism
problems for these graphs are solvable in logspace. For the broader class of concave-
round graphs, which still possess (not necessarily proper) circular-arc models, we
show that a canonical circular-arc model can also be constructed in logspace. As
a building block for these results, we design a logspace algorithm for computing
canonical circular-arc models of circular-arc hypergraphs. This class of hypergraphs
corresponds to matrices with the circular ones property, which play an important
role in computational genomics. Our results imply that there is a logspace algorithm
that decides whether a given matrix has this property.

Furthermore, we consider the Star System Problem that consists in reconstructing
a graph from its closed neighborhood hypergraph. We show that this problem is
solvable in logarithmic space for the classes of proper circular-arc, concave-round,
and co-convex graphs.
Note that solving a problem in logspace implies that it is solvable by a parallel

algorithm of the class AC1. For the problems under consideration, at most AC2

algorithms were known earlier.

1 Introduction

With a family of sets H we associate the intersection graph I(H) on vertex set H where two
sets A,B ∈ H are adjacent if and only if they have a nonempty intersection. We call H an
∗A preliminary version of this article appeared in the proceedings of FSTTCS 2012 [23]. The second author
was supported by DFG grant KO 1053/7–2. The third author was supported by DFG grant VE 652/1–1
and initiated this work under support by the Alexander von Humboldt Fellowship. He is on leave from the
Institute for Applied Problems of Mechanics and Mathematics, Lviv, Ukraine.
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intersection model of a graph G if G is isomorphic to I(H). Any isomorphism from G to I(H)
is called a representation of G by an intersection model. If H consists of intervals (resp. arcs
of a circle), it is also referred to as an interval model (resp. an arc model). An intersection
model H is proper if the sets in H are pairwise incomparable by inclusion. G is called a (proper)
interval graph if there is a (proper) interval model of G. The classes of circular-arc and proper
circular-arc graphs are defined similarly. Throughout the paper we will use the shorthands CA
and PCA, respectively.

We design a logspace algorithm that for a given PCA graph computes a canonical representation
by a proper arc model, where canonical means that isomorphic graphs receive identical models.
Note that this algorithm provides a simultaneous solution in logspace of both the recognition
and the isomorphism problems for the class of PCA graphs.

In [21], along with Bastian Laubner we gave a logspace solution for the canonical representation
problem of proper interval graphs. Though PCA graphs may at first glance appear close relatives
of proper interval graphs, the extension of the result of [21] achieved here is far from being
straightforward. Combinatorial differences between these two classes of graphs are well known,
and they are responsible for the fact that algorithms for PCA graphs often need new ideas and
are much more involved than the algorithms for the same problems on proper interval graphs; cf.
[8, 10, 11, 15, 20, 27, 28, 30, 35]. One combinatorial difference, very important in our context,
lies in the relationship of these graph classes to interval and circular-arc hypergraphs that we
will explain shortly.

An interval hypergraph is a hypergraph isomorphic to a system of intervals of integers. A
circular-arc (CA) hypergraph is defined similarly if, instead of integer intervals, we consider
arcs in a discrete circle. With any graph G, we associate its closed neighborhood hypergraph
N [G] = {N [v]}v∈V (G) on the vertex set of G, where for each vertex v we have the hyperedge N [v]
consisting of v and all the vertices adjacent to v. Roberts [33] discovered that G is a proper
interval graph if and only if N [G] is an interval hypergraph. The circular-arc world is more
complex. While N [G] is a CA hypergraph whenever G is a PCA graph, the converse is not
always true. PCA graphs are properly contained in the class of those graphs whose neighborhood
hypergraphs are CA. Graphs with this property are called concave-round by Bang-Jensen, Huang,
and Yeo [3] and Tucker graphs by Chen [7]. The latter name is justified by Tucker’s result [38]
saying that all these graphs are CA (although not necessarily proper CA). Hence, it is natural
to consider the problem of constructing arc representations for concave-round graphs. We solve
this problem in logspace and also in a canonical way.

Our working tool is a logspace algorithm for computing canonical representations of CA hyper-
graphs. This algorithm can also be used to test in logspace whether a given Boolean matrix has
the circular ones property, that is, whether the columns can be permuted so that the 1-entries
in each row form a segment up to a cyclic shift. Note that a matrix has this property if and
only if it is the incidence matrix of a CA hypergraph. The recognition problem of the circular
ones property arises in computational biology, namely in analysis of circular genomes [14, 31].

Our techniques are also applicable to the Star System Problem where, for a given hypergraphH,
we have to find a graph G such that H = N [G], if such a graph exists. In the restriction of the
problem to a class of graphs C, we seek for G only in C. We give logspace algorithms solving
the Star System Problem for PCA and for concave-round graphs.
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Comparison with previous work

Recognition, model construction, and isomorphism testing The recognition problem
for PCA graphs, along with model construction, was solved in linear time by Deng, Hell, and
Huang [11], by Kaplan and Nussbaum [20], and by Soulignac [36]; and in AC2 by Chen [8].
Note that linear-time and logspace results are in general incomparable, while the existence of a
logspace algorithm for a problem implies that it is solvable in AC1. The isomorphism problem
for PCA graphs was solved in linear time by Lin, Soulignac, and Szwarcfiter [27]; their algorithm
computes canonical representations. Curtis et al. give a linear time isomorphism test for the
larger class of concave-round graphs [10].

Chen [7] showed that the isomorphism problem for concave-round graphs is in AC2. Circular-
arc models for concave-round graphs were known to be constructible also in AC2 (Chen [6]).
Extending these upper bounds to the class of all CA graphs remains a challenging problem.

While this class can be recognized in linear time by McConnell’s algorithm [30] (along with
constructing an intersection model), no polynomial-time isomorphism test for CA graphs is
currently known (see the discussion in [10], where a counterexample to the correctness of Hsu’s
algorithm [16] is given). This provides further evidence that CA graphs are algorithmically harder
than interval graphs. For the latter class we have linear-time algorithms for recognition [4] and
canonical representation [29] due to the seminal work by Booth and Lueker; logspace algorithms
for these tasks are designed in [21].

The aforementioned circular ones property and the related consecutive ones property (requiring
that the columns can be permuted so that the 1-entries in each row form a segment) were
studied in [4, 17, 18], where linear-time algorithms are given; parallel AC2 algorithms were
suggested in [9, 2].

Star System Problem The decision version of the Star System Problem for general graphs
is NP-complete (Lalonde [25]). It stays NP-complete if restricted to non-co-bipartite graphs
(Aigner and Triesch [1]) or to H-free graphs for H being a cycle or a path on at least 5 vertices
(Fomin et al. [13]). The restriction to co-bipartite graphs has the same complexity as the general
graph isomorphism problem [1]. Polynomial-time algorithms are known for H-free graphs for H
being a cycle or a path on at most 4 vertices [13] and for bipartite graphs (Boros et al. [5]). An
analysis of the algorithms in [13] for C3- and C4-free graphs shows that the Star System Problem
for these classes is solvable even in logspace, and the same holds true for the class of bipartite
graphs; see [22]. Moreover, the problem is solvable in logspace for any logspace-recognizable
class of C4-free graphs, in particular, for chordal, interval, and proper interval graphs; see [22].

2 Basic definitions

We use the standard graph-theoretic terminology as, e.g., in [12]. The vertex set of a graph G is
denoted by V (G). The complement of a graph G is the graph G with V (G) = V (G) such that
two vertices are adjacent in G if and only if they are not adjacent in G. The set of all vertices
at distance at most (resp. exactly) 1 from a vertex v ∈ V (G) is called the closed (resp. open)
neighborhood of v and denoted by N [v] (resp. N(v)). Note that N [v] = N(v) ∪ {v}. We call
vertices u and v twins if N [u] = N [v] and fraternal if N(u) = N(v). A vertex u is universal
if N [u] = V (G). A set X ⊆ V (G) is independent if no two vertices in X are adjacent; X is a
clique if all vertices in X are pairwise adjacent.
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An isomorphism from a graph G to a graph H is a bijection ϕ : V (G)→ V (H) such that any
two vertices u and v are adjacent in G if and only if the vertices ϕ(u) and ϕ(v) are adjacent
in H. If such an isomorphism exists, G and H are called isomorphic, which is denoted as G ∼= H.
The canonical labeling problem for a class of graphs C is, given a graph G ∈ C with n vertices, to
compute a bijection λG : V (G)→ {1, . . . , n} so that λG(G) = λH(H) whenever G ∼= H, where
the graph λG(G) is the image of G under λG on the vertex set {1, . . . , n}. We say that λG is a
canonical labeling and that λG(G) is a canonical form of G.

Recall that a hypergraph is a pair (X,H), where X is a set of vertices and H is a family
of subsets of X, called hyperedges. We will use the same notation H to denote a hypergraph
and its hyperedge set and, similarly to graphs, we will write V (H) referring to the vertex
set X of the hypergraph H. An isomorphism from a hypergraph H to a hypergraph K is a
bijection ϕ : V (H) → V (K) with H ∈ H exactly when ϕ(H) ∈ K for all H ⊆ V (H), where
ϕ(H) = {ϕ(u) : u ∈ H}. We will allow multi-hyperedges; in this case an isomorphism has to
respect multiplicities.

The complement of a hypergraph H is the hypergraph H = {H}H∈H on the same vertex set,
where H = V (H) \ H. Each hyperedge H of H inherits the multiplicity of H in H. With
a graph G we associate two hypergraphs defined on the vertex set V (G). The closed (resp.
open) neighborhood hypergraph of G is defined by N [G] = {N [v]}v∈V (G) (resp. by N (G) =
{N(v)}v∈V (G)). Twins in a hypergraph are two vertices such that every hyperedge contains
either both or none of them. Note that two vertices are twins in N [G] if and only if they are
twins in G.
Let X = {x1, . . . , xn}. Saying that the sequence x1, . . . , xn is circularly ordered, we mean

that X is endowed with the (circular successor) relation ≺ under which xi ≺ xi+1 for i < n
and xn ≺ x1. Such a relation ≺ will be referred to as a circular order on X. In particular,
we will use Cn to denote the initial segment of n positive integers with the circular order
1 ≺ 2 ≺ . . . ≺ n ≺ 1. Note that a circularly ordered set (X,≺) can be viewed as a directed cycle.
The vertices of this cycle will sometimes be referred to as points. An ordered pair of elements
a−, a+ ∈ X determines an arc A = [a−, a+] that consists of the points appearing in the directed
path from a− to a+. In addition, the set A = ∅ will be called the empty arc. If A = [a−, a+]
is not the complete arc A = X, the elements a− and a+ will be referred to, respectively, as
the left and right extreme points of A. We stress that in the rest of the paper we will use
this terminology and the notation A = [a−, a+] only under the assumption that the extreme
points of the arc A are uniquely determined by the set A (i.e., when A 6= ∅ and A 6= X). A
hypergraph H with V (H) = X is called an arc system on (X,≺) if all of its hyperedges form
arcs. In this case, the circular order ≺ on X will be called a CA order of H.
A hypergraph H is called a circular-arc (CA) hypergraph if there is a circular order ≺ on

X = V (H) such thatH is an arc system on (X,≺) (or, in other words, ifH admits a CA order ≺).
Note that a hypergraph H on n vertices is circular-arc if and only if there is a hypergraph
isomorphism ρ from H to an arc system A on Cn. Any such isomorphism ρ will be called an
arc representation of H, and the corresponding arc system A will be called an arc model of H.

An arc system A is tight if any two arcs A = [a−, a+] and B = [b−, b+] in A have the following
property: if A ⊆ B, then a− = b− or a+ = b+ (note that this condition does not apply to the
empty or to the complete arc, which can be in A). A CA order of H is tight if it makes H a
tight arc system. Furthermore, we call a CA hypergraph tight if it admits a tight CA order
or, equivalently, a tight arc model. Recognition of tight CA hypergraphs reduces in logspace
to recognition of CA hypergraphs. To see this, given a hypergraph H, define its tightened
hypergraph Hb by Hb = H∪{A \B : A,B ∈ H} . Then H is a tight CA hypergraph if and only
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if Hb is a CA hypergraph. This equivalence is obvious in the forward direction. For the backward
direction, note that any CA order ≺ of Hb must be a tight CA order of H for if A ⊆ B \{b−, b+}
for some arcs A = [a−, a+] and B = [b−, b+] in (V (H),≺), then B \ A = [b−, a−) ∪ (a+, b+]
could not be an arc.
The notions of an interval representation, an interval model, and an interval order of a

hypergraph are introduced similarly to the above, where interval means an interval of consecutive
integers within {1, . . . , n}. Hypergraphs having interval representations are called interval
hypergraphs. Since any interval representation is an arc representation, they form a subclass of
CA hypergraphs.
Given a circular order ≺ of a set X, consider the set of all arcs A ⊂ X in (X,≺) excepting

the empty arc ∅ and the complete arc X. The relation ≺ induces a (lexicographic) circular
order ≺∗ on this set, where A ≺∗ B if (a− = b−∧a+ ≺ b+) or (a− ≺ b−∧ |A| = n− 1∧ |B| = 1).
The latter condition applies if A is the longest among all arcs with left extreme point a− and
B is the shortest among all arcs with left extreme point b−. Let H be an arc system on (X,≺)
containing neither ∅ nor V (H) = X. By “restricting” ≺∗ to the hyperedge set H we obtain a
circular order ≺H on H: For A,B ∈ H we define A ≺H B if either A ≺∗ B or there exists a
nonempty sequence of arcs X1, . . . , Xk /∈ H such that A ≺∗ X1 ≺∗ . . . ≺∗ Xk ≺∗ B. We say
that the circular order ≺H on H is lifted from the circular order ≺ on V (H).

An arc representation of a graph G is an isomorphism α : V (G)→ A from G to the intersection
graph I(A) of an arc system A on Ck. Here we suppose that A does not contain the empty arc.
If A also does not contain the complete arc Ck, we use the lifted circular order ≺A on A to
define a circular order ≺α on V (G), where u ≺α v if and only if α(v) ≺A α(u). We call ≺α the
geometric order on V (G) associated with α. An arc representation α (and the corresponding
arc model) is proper if α(u) 6⊆ α(v) for all vertices u 6= v. If α is a proper arc representation of a
graph G with more than one vertex, then no arc α(v) is complete, and the geometric order ≺α is
well defined. Graphs having proper arc representations are called proper circular-arc (PCA). An
example of a PCA graph along with its proper arc representation can be seen in Fig. 1 below.

Roadmap In Section 3 we show how to compute canonical arc representations for CA hyper-
graphs in logspace. This procedure will serve as a building block for our algorithms on PCA and
concave-round graphs. The connections of these classes of graphs to CA hypergraphs are outlined
in Section 4. In particular, we make use of the fact that the neighborhood hypergraph N [G] of
a non-co-bipartite PCA graph G admits a unique CA order, which coincides with the geometric
order ≺α for any proper arc representation α of G. Based on this, in Section 5 we compute
canonical representations of non-co-bipartite PCA graphs in logspace. To achieve the same for
co-bipartite PCA graphs G (and all concave-round graphs), we use the fact that N (G) is in
this case an interval hypergraph and show how to convert an interval representation of N (G)
into an arc representation of G. Finally, in Section 6 we apply the techniques of Section 3 and 4
to the Star System Problem.

3 Canonical arc representations of hypergraphs

In order to solve the canonical representation problem for CA hypergraphs we have to compute
for a given hypergraph some arc representation (if it exists) such that isomorphic CA hypergraphs
obtain identical arc models.
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Theorem 3.1. The canonical representation problem for CA hypergraphs is solvable in logspace.

Proof. We solve the problem by reducing it to the canonical representation problem for interval
hypergraphs, which is already known to be in logspace [21].
Let H be a given hypergraph with n vertices. For simplicity of exposition we first assume

that H has no multi-hyperedges. For each vertex x ∈ V (H) we construct the hypergraph
Hx = {Hx}H∈H on the same vertex set, where Hx = H if x /∈ H and Hx = H = V (H) \H
otherwise. Observe that every Hx is an interval hypergraph provided that H is a CA hypergraph;
cf. [38, Theorem 1]. Canonizing each Hx with the algorithm from [21], we obtain n interval
representations ρx : V (H)→ {1, . . . , n}; recall that V (Hx) = V (H). Whereas each ρx is an
interval representation of Hx, note that it is also an arc representation of H. Indeed, ρx(H) is
an arc system because it can be obtained from the canonical interval model ρx(Hx) of Hx by
backward complementing those intervals in ρx(Hx) that correspond to the hyperedges Hx ∈ Hx
such that Hx = H. We regard the arc representations ρx of H for all x ∈ V (H) as n candidates
for the canonical arc representation of H. In order to choose one of them, we compare the
corresponding arc models ρx(H) lexicographically (assuming a natural encoding of arc systems
over a finite vocabulary) and output the representation with the lexicographically least arc
model.

There is a subtle point in this procedure: We need to distinguish between complemented and
non-complemented hyperedges when canonizing Hx; otherwise reverting the complementation
could lead to non-equal models for isomorphic CA hypergraphs. For this reason we modify
each interval hypergraph Hx by changing the multiplicities of hyperedges. Specifically, the
hyperedge Hx is assigned the multiplicity cx(Hx) = 1 if x /∈ H and cx(Hx) = 2 if x ∈ H. Thus,
the multiplicity 2 means that the hyperedge is complemented and the multiplicity 1 means that
it stays the same in Hx as in H. There is yet another, special case that both H and H are
present in H; then Hx occurs in Hx with multiplicity 2 from the very beginning. To distinguish
this case, we assign cx(Hx) = 3 for all such H.

In the general case, an input hypergraph H contains each hyperedge H with multiplicity c(H).
We set c(H) = 0 for any set H /∈ H. Fix a logspace computable bijection p : Z+ × Z+ → Z+,
where Z+ denotes the set of non-negative integers. For example, p can be chosen to be the Cantor
pairing function p(i, j) = (i+ j)(i+ j + 1)/2 + j. Our algorithm constructs the hypergraphs Hx
along with their interval representations ρx in the same way as described above, but now
each hyperedge K ∈ Hx has multiplicity cx(K) = p

(
c(K), c(K)

)
. Since (Hx, cx) retains the

isomorphism type of H, the arc representation ρx yielding the lexicographically least arc model
of H is canonical.

Translated into the language of matrices, Theorem 3.1 has algorithmic consequences for
testing the circular ones property that was defined in the introduction.

Corollary 3.2. There is a logspace algorithm that decides whether a given Boolean matrix
has the circular ones property and, if affirmative, the algorithm also computes an appropriate
permutation of the columns.

The canonical labeling problem for a class of hypergraphs C is defined in the same way as for
graphs. Notice a similarity between the pairs of notions canonical labeling/canonical form and
canonical representation/canonical model for CA hypergraphs. The canonical representation
algorithm given by Theorem 3.1 also solves the canonical labeling problem for CA hypergraphs
in logarithmic space. We conclude this section by noting that it can also be used to compute a
canonical labeling for the duals of CA hypergraphs; this will be needed in Section 6.
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Given a hypergraph H and a vertex v ∈ V (H), let v∗ = {H ∈ H : v ∈ H}. The hypergraph
H∗ = {v∗ : v ∈ V (H)} on the vertex set V (H∗) = H is called the dual hypergraph of H (multi-
hyperedges in H become twin vertices in H∗). The map ϕ : v 7→ v∗ is an isomorphism from H
to (H∗)∗. If H∗ is a CA hypergraph, this map can be combined with a canonical labeling λ
of H∗ in order to obtain a canonical labeling λ̂ of H. More precisely, λ̂ is obtained from the
map λ′(v) = {λ(H) : v ∈ H} by sorting and renaming the values of λ′.

Corollary 3.3. The canonical labeling problem for hypergraphs whose duals are CA can be
solved in logspace.

4 Linking PCA graphs and tight CA hypergraphs

Bang-Jensen et al. [3] call a graph G concave-round (resp. convex-round) if N [G] (resp. N (G)) is
a CA hypergraph. Since N [G] = N (G), concave-round and convex-round graphs are co-classes.
Using this terminology, a result of Tucker [38] says that PCA graphs are concave-round, and
concave-round graphs are CA.

To connect the canonical representation problem for PCA and concave-round graphs to that of
CA hypergraphs, we use the fact that the graph classes under consideration can be characterized
in terms of neighborhood hypergraphs. For concave-round graphs, this directly follows from
their definition, and we can find accompanying hypergraphs also for PCA graphs. The following
fact is illustrated by an example in Fig. 1.

Theorem 4.1. A graph G is PCA if and only if N [G] is a tight CA hypergraph.

The forward direction of Theorem 4.1 follows from Lemma 4.2 below. To prove the other
direction, we distinguish two cases. If G is not bipartite, then a result of Tucker [38] says that
G is a PCA graph whenever N [G] is a CA hypergraph. For the remaining case we show in
Section 5 that if G is bipartite, then any tight arc model for N [G] can be transformed into a
proper arc model for G. Thus, the proof of Theorem 4.1 will be completed in Section 5; note
that we will use this result only later in Section 6.
The following lemma shows that every proper arc representation of a graph G induces a

structure on the vertex set of G that agrees very well with the hypergraph N [G] in the sense
that it provides a tight CA order for it. It is known that every PCA graph admits a proper arc
representation α having the additional property that no two arcs in the corresponding model
cover the whole circle [39] (see also [20] for a very short and useful argument). For proper arc
representations with this additional property the conclusion of the lemma can be deduced from

G:

c

b

a

e

d

A:
α(c)

α(b)

α(a)

α(e)

α(d)

N [G]:

c
ba

e
d

Figure 1: A graph G and a proper arc representation α : V (G) → A of G, where A is an arc
system on C10. The geometric order ≺α is a tight arc order of N [G]. In the picture
of N [G], a hyperedge N [u] is marked with a dot at the point u.
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the fact that orienting each edge {u, v} of G as (u, v) if α(u) contains the right extreme point
of α(v) results in a transitive local tournament [15, 34]. For the reader’s convenience, we give
a short proof that works for arbitrary proper arc representations and which is adapted to our
framework. A similar argument will be used once again in the proof of Lemma 6.2.

Lemma 4.2. The geometric order ≺α on V (G) associated with a proper arc representation α
of a graph G is a tight CA order for the hypergraph N [G].

Proof. We first show that the neighborhood N [u] of any vertex u ∈ V (G) is an arc with respect
to the order ≺α. Suppose that u is not universal, otherwise the claim is trivial. We will denote
the left extreme point of the arc α(u) by α−(u) and its right extreme point by α+(u), that is,
α(u) =

[
α−(u), α+(u)

]
. We split N(u) in two parts, namely N−(u) =

{
v ∈ N(u) : α−(u) ∈

α(v)
}
and N+(u) =

{
v ∈ N(u) : α+(u) ∈ α(v)

}
. Indeed, no vertex v is contained in both

N−(u) and N+(u). Otherwise, since A is proper, the arcs α(v) and α(u) would cover the
whole circle, both intersecting any other arc α(w), contradicting the assumption that u is
non-universal.
Now let v ∈ N+(u) and assume that u ≺α v1 ≺α · · · ≺α vk ≺α v. We claim that every

vertex vi is in N+(u). Indeed, by the definition of ≺α, we have α(u) ≺A α(v1) ≺A · · · ≺A
α(vk) ≺A α(v). Therefore, α−(vi) ∈

(
α−(u), α−(v)

)
and α+(vi) ∈

(
α+(u), α+(v)

)
, which

implies α+(u) ∈
[
α−(vi), α

+(vi)
]
. It follows that N+(u) ∪ {u} is an arc starting at u. By a

symmetric argument, N−(u) ∪ {u} is an arc ending at u. Hence, also N [u] is an arc, implying
that ≺α is a CA order for N [G].
It remains to show that the CA order ≺α is tight. Let x be a non-universal vertex of G.

Then its neighborhood N [x] forms an arc N [x] = [x−, x+] with respect to ≺α having extreme
points x−, x+ ∈ V (G). If y ∈ (x, x+), then α(x), α(y), and α(x+) appear in this sequence with
respect to ≺A, implying that x+ ∈ (y, y+]. In other words, if x and y are adjacent and x+ 6= y+,
then the vertices x, y, y+, x+ never appear in this sequence with respect to ≺α (ignoring other
vertices inbetween). Similarly, the sequence x−, y−, y, x is impossible for adjacent x and y
unless x− = y−. It now readily follows that the inclusion N [u] ⊂ N [v] implies that either
u− = v− or u+ = v+.

Theorem 4.1 suggests that knowing a tight CA order of N [G] might be useful for constructing
a proper arc representation for a PCA graph G. In the case that G is not bipartite, the geometric
order of such a representation can be obtained by computing an arbitrary CA order of N [G],
which will be necessarily tight. This follows from Lemma 4.2 and the following proposition.

Proposition 4.3. If G is a connected twin-free PCA graph and G is not bipartite, then N [G] has
a unique CA order up to reversing.

Proposition 4.3 can be derived from a result of Deng, Hell, and Huang [11, Corollary 2.9],
which is based on [19, Theorem 4.9] (see also a proof of this fact in [24, Theorem 3.7.1]).

We close this section by giving a characterization of concave-round graphs G with bipartite
complement in terms of N (G). Given a bipartite graph H and a bipartition V (H) = U ∪W of
its vertices into two independent sets, by NU (H) we denote the hypergraph {N(w)}w∈W on the
vertex set U . Note that NU (H) and NW (H) are dual hypergraphs, i.e., (NU (H))∗ ∼= NW (H).
A bipartite graph H is called convex if its vertex set admits splitting into two independent
sets U and W , such that NU (H) is an interval hypergraph. If both NU (H) and NW (H) are
interval hypergraphs, H is called biconvex [37]. As G is co-bipartite concave-round if and
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only if its complement H = G is bipartite convex-round, the following fact gives the desired
characterization.

Proposition 4.4 (Theorem 2.2 in [39]). A graph H is bipartite convex-round if and only if it
is biconvex, which in turn is equivalent to N (H) being an interval hypergraph.

5 Canonical arc representations of concave-round and
PCA graphs

We are now ready to present our canonical representation algorithm for concave-round and
PCA graphs. For a given concave-round graph, we have to compute an arc representation
such that isomorphic concave-round graphs obtain identical arc models and, moreover, all
PCA graphs obtain proper arc models.

Theorem 5.1. There is a logspace algorithm that solves the canonical arc representation
problem for the class of concave-round graphs. Moreover, this algorithm outputs a proper arc
representation whenever the input graph is PCA.

For any class of intersection graphs, a canonical representation algorithm readily implies a
canonical labeling algorithm of the same complexity. Vice versa, a canonical representation
algorithm readily follows from a canonical labeling algorithm and a representation algorithm
(not necessarily a canonical one). Proving Theorem 5.1 according to this scheme, we split our
task into two parts: We first compute a canonical labeling λ of the input graph G and then
we compute an arc representation α of the canonical form λ(G). Then the composition α ◦ λ
is a canonical arc representation of G. As twins can be easily re-inserted in a (proper) arc
representation, it suffices to compute α for the twin-free version of λ(G), where in each twin-class
we only keep one vertex.

We distinguish two cases depending on whether G is bipartite; see Fig. 2 for an overview of
the involved graph classes.

5.1 Non-co-bipartite concave-round graphs

As mentioned before, any concave-round graph G whose complement is not bipartite is actually
a PCA graph [38]. Hence, we have to compute a proper arc representation in this case.

Canonical labeling We first transform G into its twin-free version G′, where we only keep
one vertex in each twin-class. Let n be the number of vertices in G′. We use the algorithm given
by Theorem 3.1 to compute an arc representation ρ′ of N [G′]. By Proposition 4.3, N [G′] has a

CA

concave-round

PCA

non-co-bipartite PCA
=non-co-bipartite concave-round

co-bipartite concave-round

co-bipartite PCA concave-round \ PCA

co-convex

co-biconvex=

Figure 2: Inclusion structure of the classes of graphs under consideration.
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CA order which is unique up to reversing. Hence, in order to determine a canonical labeling
of G, it suffices to consider the 2n arc representations ρ1, . . . , ρ2n of N [G] that can be obtained
from ρ′ by cyclic shifting and reversing the points of Cn and by re-inserting all the removed
twins. As a canonical labeling ρi of G, we appoint one of these 2n variants that gives the
canonical form ρi(G) of G with the lexicographically least adjacency matrix.

Proper arc representation As mentioned above, it suffices to find such a representation
for the twin-free graph G′. The arc representation ρ′ of N [G′] that we already have computed
provides us with a CA order ≺ for N [G′]. By Lemma 4.2 and Proposition 4.3, ≺ coincides
with the geometric order ≺α for any proper arc representation α of G′. Every PCA graph G′

admits a proper arc representation α : V (G′)→ A such that no two arcs α(v) =
[
α−(v), α+(v)

]
and α(u) =

[
α−(u), α+(u)

]
in A share an extreme point and that V (A) consists of exactly

2n points. Such an α is reconstructible in logspace from ≺ (uniquely up to the circle rotation)
as the left extreme points α−(v) appear in the circle according to ≺, the same holds true for the
right extreme points α+(v), and each right extreme point α+(v) lies between the left extreme
point α−(v+) and the following left extreme point, where v+ is the right extreme point of the
arc N [v] with respect to ≺. Note that the extreme points of N [v] = [v−, v+] are well defined
because no vertex v can be universal; otherwise the arcs containing the extreme points of α(v)
would correspond to two cliques covering the whole vertex set V (G′).

5.2 Co-bipartite concave-round graphs

By Proposition 4.4, co-bipartite concave-round graphs are precisely the co-biconvex graphs. In
fact, even all co-convex graphs are circular-arc (this is implicit in [38]) and we can compute a
canonical arc representation actually for this larger class of graphs.

Canonical labeling A logspace algorithm for canonical labeling of convex graphs, and hence
also co-convex graphs, is designed in [21].

(Proper) arc representation We first recall Tucker’s argument [38] showing that, if the
complement of G is a convex graph, then G is CA. We can assume that G has no fraternal
vertices as those would correspond to twins in G.

Let V (G) = U ∪ W be a partition of G into independent sets such that NU (G) is an
interval hypergraph. Let u1, . . . , uk be an interval order on U for NU (G). We construct
an arc representation α for G on the cycle C2k+2 (see Fig. 3 for an example) by setting
α(ui) = [i + 1, i + k + 1] for each ui ∈ U and α(w) = [j + k + 2, i] for each w ∈ W , where
NG(w) = [ui, uj ] and the subscript G means that the vertex neighborhood is considered in
the complement of G. Note that α(w) = C2k+2 \

⋃
u∈NG(w) α(u). In the case that NG(w) = ∅,

we set α(w) = [1, k + 1]. By construction, all arcs α(u) for u ∈ U share a point (even two,
k + 1 and k + 2), the same holds true for all α(w) for w ∈W (they share the point 1), and any
pair α(u) and α(w) is intersecting if and only if u and w are adjacent in G. Thus, α is indeed
an arc representation for G.

In order to compute α in logspace, it suffices to compute a suitable bipartition {U,W} of G
and an interval order of the hypergraph NU (G) in logspace. Finding a bipartition {U,W} such
that NU (G) is an interval hypergraph can be done by splitting G into connected components
H1, . . . ,Hk (using Reingold’s algorithm [32]) and finding such a bipartition {Ui,Wi} for each
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Figure 3: (a) The complement G of a co-bipartite concave-round graph G with the bipartition
U = {a, b, c, d} and W = {e, f, g, h}. (b) A tight interval order of NU (G) (two shifted
copies of which are depicted in gray) is used to construct a tight arc representation α
for G on the circle C10 (depicted in black); see the text for details.

component Hi. By using the logspace algorithm of [21] we can actually compute interval
orders of the hypergraphs NUi(Hi) which can be easily pasted together to give an interval order
of NU (G). Together with the canonical labeling algorithm this implies that the canonical arc
representation problem for co-convex graphs and, in particular, for co-bipartite concave-round
graphs is solvable in logspace.
It remains to show that for co-bipartite PCA graphs we can actually compute a proper arc

representation in logspace. As above, we assume that G is twin-free. By Lemma 4.2, the
hypergraph N [G] has a tight CA order ≺. We can compute ≺ in logspace by running the
algorithm given by Theorem 3.1 on the tightened hypergraph (N [G])b. Now, our goal is to
convert the tight CA order of N [G] into a proper arc representation of G. This will also complete
the proof of Theorem 4.1 stated in Section 4.
Like any tight CA order of N [G], ≺ is also a tight CA order of N (G). Let V (G) = U ∪W

be a bipartition of G into two independent sets. Note that the restriction of ≺ to NU (G) is a
tight interval order of the interval hypergraph NU (G). Retracing Tucker’s construction of an
arc representation α for a co-convex graph G (which is outlined above) in the case that the
interval order of NU (G) is tight, we see that α now gives us a tight arc model for G. Note that,
by construction, this model contains no complete arc.
It remains to note that any tight α with this property can be converted into a proper arc

representation β. Tucker [38] described such a transformation, and Chen [8] observed that it can
be implemented in AC1. This transformation slightly extends contained arcs on the side where
their extreme point coincides with an extreme point of the containing arc. The resulting proper
arc representation β has the property that the associated geometric orders of α and β on V (G)
coincide, that is, u ≺α v if and only if u ≺β v. In order to implement this idea in logspace, we
replace each arc α(v) =

[
α−(v), α+(v)

]
by an arc β(v) =

[
β−(v), β+(v)

]
as described below.

First of all, β(v) is an arc on the circle C2n, where n is the number of vertices in G. Note that
every point of C2n must be an extreme point of exactly one arc. Without loss of generality, we
assume that α−(v) = 1 for some vertex v. Then the left extreme point of β(v) is determined by

β−(v) =
∣∣∣{u ∈ V (G) : α+(u) ∈

[
1, α−(v)

)}∣∣∣
+
∣∣∣{u ∈ V (G) : α−(u) ∈

[
1, α−(v)

)
∨
(
α−(u) = α−(v) ∧ α+(u) ∈ α(v)

)}∣∣∣.
As there can be more than one vertex v such that α−(v) = 1, let v0 denote such a vertex with
the shortest arc α(v0). It is straightforward to check that β−(v0) = 1. The definition of β−(v)

11



ensures that the arc [1, β−(v)] is exactly long enough to contain

• the left extreme vertices β−(u) for all u ∈ [v0, v] and

• the right extreme vertices β+(u) for all u ∈ [v−0 , v
−),

where the arc notation on V (G) is with respect to ≺α (recall that N [v] = [v−, v+]). Since the
arc β(v) has to contain exactly one extreme point of every neighbor of v, the right extreme
point of β(v) is determined by

β+(v) = β−(v) + |N(v)|+ 1;

whenever the right hand side exceeds 2n, it has to be decreased by this number.
This completes the proof of Theorem 5.1, and we have additionally proved the following

corollary.

Corollary 5.2. The canonical arc representation problem for co-convex graphs is solvable in
logspace.

6 Solving the Star System Problem

In this section, we present logspace algorithms for the Star System Problem: Given a hyper-
graph H, find a graph G in a specified graph class C such that N [G] = H (if such a graph exists).
The term star refers to the closed neighborhood of a vertex in G. In this terminology, the
problem is to identify the center of each star H in the star system H. To denote this problem,
we use the abbreviation SSP. Note that a logspace algorithm A solving the SSP for a class C
cannot be directly used for solving the SSP for a subclass C′ of C: If A on input H outputs a
solution G in C \ C′, then we don’t know whether there is another solution G′ in C′. However, if
the SSP for C has unique solutions and if membership in C′ is decidable in logspace, then it is
easy to convert A into a logspace algorithm A′ solving the SSP for C′.

Theorem 6.1.
1. The SSP for PCA and for co-convex graphs is solvable in logspace.
2. If G is a co-convex graph, then N [G] ∼= N [G′] implies G ∼= G′.

The implication stated in Theorem 6.1.2 is known to be true also for concave-round graphs
(Chen [7]). As a consequence, since concave-round graphs form a logspace decidable subclass of
the union of PCA and co-convex graphs, we can also solve the SSP for concave-round graphs in
logspace.

The proof of Theorem 6.1 is given in the rest of this section. We design logspace algorithms
A1 and A2 solving the SSP for non-co-bipartite PCA graphs and for co-convex graphs, re-
spectively. Since by Theorem 6.1.2, the output of A2 is unique up to isomorphism, we can
easily combine the two algorithms to obtain a logspace algorithm A3 solving the SSP for all
PCA graphs: On input H run A1 and A2 and check if one of the resulting graphs is PCA (recall
that co-bipartite PCA graphs are co-convex; see Fig. 2).
Clearly, it suffices to consider the case that the input hypergraph H is connected.

12



6.1 Non-co-bipartite PCA graphs

Let H be the given input hypergraph and assume that H = N [G] for a PCA graph G. By
Theorem 4.1, H has to be a tight CA hypergraph, a condition that can be checked by testing if
the tightened hypergraph Hb is CA. Since G is concave-round, Proposition 4.4 implies that
G is co-bipartite if and only if N (G) = H is an interval hypergraph. It follows that the SSP
on H can only have a non-co-bipartite PCA graph as solution if Hb is CA and H is not interval.
Both conditions can be checked in logspace using the algorithms given by Theorem 3.1 and [21].
Further, it follows by Theorem 4.1 and Proposition 4.4 that in this case any SSP solution
for H is a non-co-bipartite PCA graph (which is also connected because H is assumed to be
connected).

Assume first that the hypergraph H is twin-free. In order to reconstruct G from H, we have
to choose the center in each star H ∈ H. The following lemma considerably restricts this choice.

Lemma 6.2. Let G be a connected, non-co-bipartite and twin-free PCA graph and let ≺
be a circular order on V (G) that is a CA order of N [G]. Then u ≺ v holds exactly when
N [u] ≺N [G] N [v], where ≺N [G] is the circular order on N [G] lifted from ≺.

Proof. First of all, note that the circular order ≺N [G] on N [G] is correctly defined because a
non-co-bipartite PCA graph has no universal vertex (we observed this fact in Section 5). By
the same reason we can use the notation N [x] = [x−, x+] with respect to ≺.
By Lemma 4.2 and Proposition 4.3, there is a proper arc representation α of G such that
≺ coincides with the associated geometric order ≺α. We will use the following fact observed in
the proof of Lemma 4.2. Suppose that x and y are adjacent vertices of G. Then the vertices x,
y, y+, x+ never appear in this sequence (not necessary consecutively) with respect to ≺ unless
x+ = y+ and, similarly, the vertices x−, y−, y, x never appear in this sequence unless x− = y−.

To prove the lemma, it suffices to show that u ≺ v implies N [u] ≺N [G] N [v]. To this end we
show that there is no third vertex w such that the arcs N [u], N [w], and N [v] appear in this
sequence under the circular order ≺N [G].

Suppose first that u and v are adjacent. Then the vertices u−, v−, u, v, u+, and, v+ appear
in this circular sequence, as shown Fig. 4(a) (though it is not excluded that some of these
vertices can coincide, for example, u− = v− or u+ = v+). We split our analysis into three cases,
depending on the position of w on the cycle (V (G),≺). If w ∈ (v, v+], then w− ∈ [v−, v]. If
w− 6= v−, then N [u], N [v], and N [w] clearly appear in this sequence under ≺N [G]. The same
holds true if w− = v− because then the arc [w−, w+] has to be longer than the arc [v−, v+].
If w ∈ [u−, u), then u− must belong to [w−, w]. N [w], N [u], and N [v] obviously appear in
this sequence if w− 6= u−. This is also true if w− = u− because [w−, w+] must be shorter
than [u−, u+] in this case. If w ∈ (v+, u−), then w− ∈ (v, u−), and again N [w] cannot be
intermediate.

(a)

u− u+
u

v−

v+

v
(b)

u−
u

v+

v

Figure 4: Two cases in the proof of Lemma 6.2.
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Suppose now that u and v are not adjacent. It follows that N [u] = [u−, u] and N [v] = [v, v+];
see Fig. 4(b). Therefore, both N [u] and N [v] are cliques. Again we have to show that for no
third vertex w, the arcs N [u], N [w], and N [v] appear in this sequence under ≺N [G]. This is clear
if w− ∈ (v, u−). This is also so if w− = v, because then the arc [v, v+] must be shorter than the
arc [w−, w+]. Finally, note that the remaining case w− ∈ [u−, v) is not possible. Indeed, in this
case v /∈ N [w], for else the non-adjacent vertices u and v would belong to the clique [w,w+].
Hence, it would follow that N [w] = [w−, w+] ( [u−, u+] = N [u], contradicting the fact that
N [u] is a clique.

Lemma 6.2 states that the mapping v 7→ N [v] is an isomorphism between the two directed
cycles (V (G),≺) and (N [G],≺N [G]). Since there are exactly n such isomorphisms, we get
exactly n candidates f1, . . . , fn for the mapping v 7→ N [v]. Hence, all we have to do is to use
the algorithm given by Theorem 3.1 to compute a CA order ≺ of H and the corresponding
lifted order ≺H in logspace. Now for each isomorphism f between (V (H),≺) and (H,≺H) we
have to check if selecting v as the center of the star f(v) results in a graph G, that is, if for all
v, u ∈ V (H) it holds that v ∈ f(v) and that v ∈ f(u) exactly when u ∈ f(v).

This completes the solution in the case that the input hypergraph H is twin-free. We will also
need the fact that the SSP has at most one solution in this case. Note that the aforementioned
result by Chen [7] ensures the uniqueness up to isomorphism. In order to prove the uniqueness
up to equality, let v0, v1, . . . , vn−1 be the list of the vertices according to a circular order ≺, and
suppose that the assignment vi 7→ Hi corresponds to some non-co-bipartite PCA graph G, that
is, Hi = NG[vi]. Let Hi = [v−i , v

+
i ], where the arc notation is with respect to ≺. We can orient

each edge {vi, vj} of G as the ordered pair vivj if vj ∈ (vi, v
+
i ] and vjvi if vj ∈ [v−i , vi). This

rule is consistent because ≺ is equal to ≺α for some proper arc representation α of G, and then
an edge {vi, vj} is oriented as vivj exactly when α(vj) contains the right extreme point of α(vi).
Note that this is a round orientation of G as defined by Deng, Hell, and Huang [11]. The sum
of outdegrees over the vertices of G is equal to

∑n−1
i=0

∣∣(vi, v+i ]∣∣, while the sum of indegrees is
equal to

∑n−1
i=0

∣∣[v−i , vi)∣∣. As a general fact about graph orientations, the two sums must be
equal, each being equal to the number of edges in G.
We now show that the other n − 1 possible assignments vi 7→ Hi+k, where 1 ≤ k < n and

the addition is modulo n, do not correspond to any graph. Fix k and suppose that vi ∈ Hi+k

for all i; otherwise the claim is clear. Assume that vj ∈ [v−j+k, vj+k) for some j (the case that
vj ∈ (vj+k, v

+
j+k] for some j is symmetric). This implies that vj+1 ∈ [v−j+1+k, vj+1+k). Indeed, if

vj+1 ∈ (vj+1+k, v
+
j+1+k], then the arcs [v−j+k, vj+k] and [vj+1+k, v

+
j+1+k] would cover the entire

vertex set, yielding a covering of the graph G by two cliques. We conclude that vi ∈ [v−i+k, vi+k)

for all i. This implies that
∣∣(vi, v+i+k]∣∣ > ∣∣(vi+k, v+i+k]∣∣ and ∣∣[v−i+k, vi)∣∣ < ∣∣[v−i+k, vi+k)∣∣ for every i.

It follows that there is no G′ such that NG′(vi) = Hi+k for all i as the equality of the sums
of in- and outdegrees for the round orientation of such G′ would be violated (recall that any
such G′ must be a non-co-bipartite PCA graph). Therefore, the SSP on H can have no other
solution than G.
We are now ready to solve the SSP in the case that the input hypergraph H has twins. If
H = N [G], then any two vertices that are twins in H are also twins in G. Therefore, H must have
multi-hyperedges for else the SSP has no solution. Let H′ be obtained from H by removing twins
(more precisely, in each twin-class we leave a single vertex) and by removing multi-hyperedges.
However, for each H ∈ H′ we will remember the multiplicity of the corresponding hyperedge
in H, denoting it by µ(H). Moreover, for a vertex v of H′, let ν(v) denote the number of twins
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that v has in H (including itself). Given a graph G, denote its twin-free version by G′. Note
that H = N [G] implies H′ = N [G′] (assuming that the twin-classes in H in G are reduced in the
same way). The converse implication is true if and only if ν(v) = µ(NG′ [v]) for all v ∈ V (G′).
This yields the following reduction of the SSP to the twin-free case, that works for any class of
graphs C that, like the class of non-co-bipartite PCA graphs, has the following two properties:

• C is closed under removing and adding twins,

• whenever the SSP has a solution in C, it is unique.

Given a hypergraph H with twins, we construct H′ and compute the functions ν : V (H′)→ Z
and µ : H′ → Z as defined above. Then we try to find a graph G′ in C such that H′ = N [G′]. If
such a graph G′ does not exist, the SSP has no solution also on H. If such a G′ exists, it is
unique, and there is no other way to get a solution G on H than to clone each vertex v of G′

with multiplicity ν(v) (more precisely, the restored twin-class of v in G must be equal to the
twin-class of v in H). The graph G satisfies the equality H = N [G] if ν(v) = µ(NG′ [v]) for all
v ∈ V (G′); otherwise there is no solution. This reduction is clearly implementable in logspace.

6.2 Co-convex graphs

Let H be the given hypergraph and assume that H = N [G] for a co-convex graph G. To
facilitate the exposition, suppose first that the bipartite complement G is connected. Recall that
the vertex set of a connected bipartite graph is uniquely split into two independent sets; they
are referred to as the vertex classes of the graph. Denote the vertex classes of G by U and W .
Then H = N (G) = NU (G) ∪NW (G), where the vertex-disjoint hypergraphs U = NU (G) and
W = NW (G) are dual (i.e., U∗ ∼= W), both connected, and at least one of them is interval,
say, U . Note also that, since G is connected, H has no isolated vertex, that is, every vertex is
contained in some hyperedge. We need a simple auxiliary fact.

Lemma 6.3. Let K be a graph without isolated vertices and let L be a connected component
of N (K). Denote U = V (L). Then either U is an independent set in K or U induces a
connected component of K. Moreover, if U is independent, then there is a connected component
of K that is a bipartite graph with U being one of its vertex classes.

Proof. If U is not independent in K, it contains at least two adjacent vertices u1 and u2. Let K ′

denote the connected component of K containing u1 and u2. By connectedness of L, the set U
contains both neighborhoods NK(u1) and NK(u2). We can apply this observation to each edge
along any path in K ′. It readily follows that V (K ′) ⊆ U . In fact, V (K ′) = U because otherwise
L would be disconnected.
Assume now that U is independent in K. Consider a vertex u ∈ U and a vertex w adjacent

to u in K. Let L′ be the connected component of N (K) containing w. As shown above, the set
of vertices W = V (L′) is independent in K (otherwise W would contain u). By connectedness of
L and L′, once we have an edge uw between U and W , we have NK(w) ⊆ U and NK(u) ⊆W .
Let K ′ denote now the connected component of K containing u and w. This observation is
applicable to each edge along any path in K ′. It follows that K ′ is bipartite with one vertex
class included in U and the other in W . In fact, the vertex classes of K ′ coincide with U and W
by connectedness of L and L′.

Denote K = H and assume that K = N (K) for some graph K, possibly different from G.
Since K has no isolated vertex, K also has none. Lemma 6.3 implies either that K is a connected
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bipartite graph with vertex classes U,W or that K has two connected components K1 and K2

with V (K1) = U and V (K2) = W . However, the second possibility leads to a contradiction.
Indeed, since the hypergraph N (K1) = U is interval, Proposition 4.4 implies that K1 is bipartite,
contradicting the connectedness of U . Therefore, K must be connected and bipartite with vertex
classes U,W .
Recall that the incidence graph of a hypergraph X is the bipartite graph with vertex

classes V (X ) and X where x ∈ V (X ) and X ∈ X are adjacent if x ∈ X (if X has multi-
plicity k in X , it contributes k fraternal vertices in the incidence graph). Since K is isomorphic
to the incidence graph of the hypergraph U (as well as W), K is reconstructible from K up to
isomorphism and, in particular, K ∼= G. Thus, the solution to the SSP on H is unique up to
isomorphism.1

After these considerations we are ready to describe our logspace algorithm for solving the SSP
for the class of co-convex co-connected graphs. Given a hypergraph H, we first check if H has
exactly two connected components, say U and W. This can be done by running Reingold’s
reachability algorithm [32] on the intersection graph I(H). If this is not the case, there is no
solution in the desired class. Otherwise, we construct the incidence graph F of the hypergraph U
(or of W, which should give the same result up to isomorphism) and take its complement F .
Note that this works well even if F has twins: the twins in V (U) are explicitly present, while
the twins in V (W) are represented by multi-hyperedges in U .
As argued above, if the SSP on H has a co-convex co-connected solution, then the closed

neighborhood hypergraph F = N [F ] of F is isomorphic to H. However, it may not be equal
to H. In this case we compute an isomorphism ϕ from F to H or, the same task, from F
to H. This can be done by the algorithms of [21] and Corollary 3.3, because at least one of
the connected components of F ∼= H is an interval hypergraph and the other component is
isomorphic to the dual of an interval hypergraph. Now, the isomorphic image G = ϕ(F ) of F is
the desired solution to the SSP on H as N [ϕ(F )] = ϕ(N [F ]) = H.
If we do not succeed with establishing an isomorphism between F and H, this implies that

there is no solution in the desired class. Alternatively, we could check from the very beginning
whether one of the hypergraphs U and W is interval and U∗ ∼=W.

Consider now the general case when H = N [G] for a co-convex graph G with not necessary
connected complement G. Note that universal vertices of G are easy to identify in H: those
are the vertices contained in every hyperedge of H. We first have to check that the number
of such vertices is equal to the multiplicity of the hyperedge V (H) in H for else the SSP has
no solution on H. If the two numbers are equal, we can remove all universal vertices from H
along with all copies of the hyperedge V (H), solve the SSP for the reduced hypergraph, and
then restore a solution for H. The last step can be done in a unique way. We will, therefore,
assume that G has no universal vertex or, equivalently, H = N (G) has no isolated vertex.
If G consists of k connected components H1, . . . ,Hk, where Hi is a bipartite graph with

vertex classes Ui and Wi, then K = H consists of 2k connected components Ui = NUi(Hi) and
Wi = NWi(Hi), each pair being dual. Moreover, it can be supposed that all Ui are interval
hypergraphs.

Assume that K = N (K) for any other graph K. By Lemma 6.3, for each connected component
L ∈

{
Ui,Wi

}k
i=1

either V (L) ∈
{
Ui,Wi

}k
i=1

induces a connected component of K or there is
another connected component L′ such that V (L) ∪ V (L′) induces a connected component of K

1The uniqueness result of Boros et al. [5] implies a somewhat weaker fact, namely the uniqueness up to
isomorphism within the class of co-convex graphs.
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that is a bipartite graph. Note that in the latter case L and L′ have to be dual hypergraphs,
i.e., L′ ∼= L∗. Recall that, by Proposition 4.4, no Ui can alone induce a connected component
of K. It readily follows that K consists of k connected bipartite components K1, . . . ,Kk, where
the vertex classes Yi and Zi of each Ki induce connected components of K. Moreover, we can
enumerate K1, . . . ,Kk so that the components of K induced by Yi and Zi are isomorphic to Ui
and Wi. Since both Hi and Ki are isomorphic to the incidence graph of the hypergraph Ui (as
well as Wi), the graphs K and G are isomorphic and the solution to the SSP on H is unique up
to isomorphism.
This analysis suggests the following logspace algorithm solving the SSP for the class of

co-convex graphs without universal vertices. Given a hypergraph H, we first check if H has an
even number of connected components that can be split into pairs Ui and Wi so that Ui is an
interval hypergraph and Wi

∼= U∗i . This step can be done by using Reingold’s algorithm and
the algorithm of [21]. A desired solution exists if and only if this is possible.
Note that some of the hypergraphs Wi can also be interval. Then the set

{
Ui
}k
i=1

can
be chosen in essentially different (non-isomorphic) ways; however, all these choices will give
isomorphic outcomes (as all choices of

{
Ui
}k
i=1

are equivalent up to isomorphism and taking
duals).

Then, for each i, we construct the incidence graph Fi of the hypergraph Ui, form the graph F
as the vertex-disjoint union of all Fi, and take its complement F .
By the already established uniqueness, the closed neighborhood hypergraph F = N [F ] is

isomorphic to H. We find an isomorphism ϕ from F to H or, the same, from F to H. We do it
componentwise by running the algorithms of [21] and Corollary 3.3 on the connected components
of F and H. The isomorphic image G = ϕ(F ) is a solution as N [ϕ(F )] = ϕ(N [F ]) = H.

7 Concluding remarks

By Theorem 5.1, there is a logspace algorithm that solves the canonical arc representation problem
for PCA graphs, where the constructed models are proper. Unit CA graphs are CA graphs that
admit a PCA model where all arcs have equal length. The unit arc representation problem for
such graphs can be solved in linear time [28, 20]. In a previous version of this article we asked
whether it can also be solved in logspace. Soulignac answered this positively [35], employing
our PCA representation algorithm as a subroutine. The unit interval representation problem is
solved in logspace in [21].

In Section 6, we solve the Star System Problem for PCA graphs and concave-round graphs in
logspace. Is this also possible for other classes of circular-arc graphs? Furthermore, can one
extend the result of Theorem 6.1.2 about the uniqueness of a solution to this problem?

In analogy to convex graphs, Liang and Blum [26] call a bipartite graph G with vertex classes
U and V circular convex, if NU (G) = {NG(u)}u∈U is a CA hypergraph. We remark that our
logspace algorithm for canonical representation of CA hypergraphs can be used to solve the
canonical labeling problem for circular convex graphs in logspace. Indeed, in [21] we converted a
canonical representation algorithm for interval hypergraphs into a canonical labeling algorithm
for convex graphs, and this approach can be easily adapted to the circular-arc setting.
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