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Abstract. Given a system of linear equations Ax = b over the binary
field F2 and an integer t ≥ 1, we study the following three algorithmic
problems:
1. Does Ax = b have a solution of weight at most t?
2. Does Ax = b have a solution of weight exactly t?
3. Does Ax = b have a solution of weight at least t?

We investigate the parameterized complexity of these problems with t as
parameter. A special aspect of our study is to show how the maximum
multiplicity k of variable occurrences in Ax = b influences the complexity
of the problem. We show a sharp dichotomy: for each k ≥ 3 the first
two problems are W[1]-hard (which strengthens and simplifies a result
of Downey et al. [SIAM J. Comput. 29, 1999]). For k = 2, the problems
turn out to be intimately connected to well-studied matching problems
and can be efficiently solved using matching algorithms.

1 Introduction

There are well known efficient methods, like Gaussian elimination, to solve
systems of linear equations Ax = b over F2. The problem becomes harder when
we are seeking for a solution u with certain constraints placed on its Hamming
weight wt(u). This problem has been extensively studied in the context of error
correcting codes as it is closely related to the minimum weight codeword problem:
given a linear code defined by Ax = 0, what is the minimum weight of a non-zero
codeword in it? This problem is known to be NP-hard [14], and even hard to
approximate within any constant factor, assuming NP 6= RP [6]. There are three
related decision problems of interest for systems of linear equations Ax = b
over F2:

1. (A, b, t) ∈ LinEq≤ if Ax = b admits a solution u with 1 ≤ wt(u) ≤ t.
? An extended abstract of this article appears in the proceedings of IPEC 2014. This
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2. (A, b, t) ∈ LinEq= if Ax = b admits a solution u with wt(u) = t.
3. (A, b, t) ∈ LinEq≥ if Ax = b admits a solution u with wt(u) ≥ t.

Berlekamp et al. [2] show that both LinEq≤ and LinEq= are NP-complete.
When b is the all zeros vector, LinEq≤ is the minimum weight codeword problem
which is NP-hard [14], as already mentioned. Ntafos et al. [10] show that LinEq≥
is NP-complete (also see [15]). See [9] for a nice discussion of these hardness
results.

When the weight threshold t is considered as parameter, we denote the
resulting parameterized versions of these problems by LinEq≤,t, LinEq=,t and
LinEq≤,t, respectively. Downey et al. [5] studied special cases of LinEq≤,t and
LinEq=,t: when the vector b is either the all zeros vector or b is the all ones vector.
These two special cases are called Even and Odd, respectively, for the weight at
most t version. As argued in Remark 2.1 below, all other cases for vector b are
in fact equivalent to either one of them. Observe that in the Even case, setting
all variables to zero is always a solution; this is why LinEq≤,t and Even ask
for solutions of weight at least 1. For the weight exactly t version, the problems
are called Exact Even and Exact Odd. It turns out via a complicated proof
in [5], that Odd, Exact Odd and Exact Even are W[1]-hard. Whether Even
is also W[1]-hard remains open. The problem LinEq≥,t, to our knowledge, has
not been studied in the parameterized setting before. We show in Section 6 that
in contrast to the other two, this problem is in FPT.

Our main contribution is the study of LinEq≤,t and LinEq=,t in the light of
some additional parameters: the maximum number k of occurrences of a variable
in the system and the maximum size s of an equation. When k and s are restricted
or used as an additional parameter, we denote this by an additional subscript
to the respective problem. For example, k is treated as an additional parameter
(besides t) in LinEq≤,t,k, and bounded by kmax in LinEq≤,t,k≤kmax

.

Table 1. Summary of results.

parameter/restriction list α

Problem t t, k ≤ 3 t, k ≤ 2 k ≤ 2 s, t s ≤ 2

LinEq≤,α W[1]-hard W[1]-hard FPT P FPT L-complete
[5] Thm. 3.1 Thm. 4.1 Thm. 4.1 Thm. 5.1 Thm. 5.5

LinEq=,α W[1]-harda W[1]-harda FPT RNC FPT L-complete
[5] Thm. 3.1 Thm. 4.6 Cor. 4.4 Thm. 5.4 Thm. 5.5

LinEq≥,α FPT FPT FPT P FPT L-complete
Thm. 6.3 Thm. 6.3 Thm. 6.3 Thm. 4.2 Thm. 6.3 Thm. 5.5

a Remains W[1]-hard for b = 0.

Concerning parameter k, we show a sharp dichotomy in the complexity of
the problem. We prove that LinEq≤,t,k≤kmax

and LinEq=,t,k≤kmax
are fixed
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parameter tractable for kmax ≤ 2, whereas for each kmax ≥ 3, both problems are
W[1]-hard. For the weight exactly t version, the hardness also holds for b = 0,
while this case remains open for the weight at most t version.

Our hardness proof is a direct reduction from the parameterized clique problem.
It strengthens and is much simpler than the proofs in [4,5] that (for unbounded
occurrence multiplicity of the variables) go over a series of reductions running
into nearly 10 pages. Furthermore, it gives alternative proofs of hardness for their
results for Exact Even, Odd and Exact Odd.

For kmax = 2, we establish a connection between the equation systems and
graph matching problems. We show that LinEq≤,k≤2 and LinEq≥,k≤2 are solv-
able in polynomial time, while LinEq=,k≤2 is solvable in randomized NC (RNC).
The latter result follows from an interesting connection between LinEq=,k≤2
and Red-Blue Perfect Matching [12] (also known as Exact Matching),
which is known to be solvable in RNC [11] but not known to be in P. We show in
Section 4 that both problems are equivalent under logarithmic space reductions.
Hence, proving that LinEq=,k=2 is in P would imply that Red-Blue Perfect
Matching is also in P, solving a long standing open question. Further we show
that LinEq=,t,k≤2 is fixed parameter tractable.

If the maximum equation size s is an additional parameter then, as we show
in Section 5, all three problems are fixed parameter tractable. In particular, if
s ≤ 2 then even the parameter-free versions of all three problems are solvable in
logarithmic space. A summary of the results is given in Table 1.

Our fpt algorithms involve standard techniques like color coding (Theorems 4.6
and 5.4), depth-bounded search trees (Theorem 5.1), and reduction to problem
kernels (Theorem 6.3).

2 Basic transformations

In this section we describe some basic transformations between various linear
equation system problems. We first remark that while there is a trivial disjunctive
reduction from LinEq≤ to LinEq= that maps (A, b, t) 7→

{
(A, b, t′) : 1 ≤ t′ ≤ t

}
,

there is no trivial reduction for the converse direction. Indeed, there can be
many solutions of different weights, and thus (A, b, t) ∈ LinEq= does not imply
(A, b, t− 1) /∈ LinEq≤.

We now turn to the different possibilities for the vector b. The following
remark shows that (Exact) Even fpt reduces to (Exact) Odd, taking the
focus away from the “mixed” case.

Remark 2.1. A system of linear equations Ax = b over F2 can be easily trans-
formed into an equivalent system A′x′ = 1: Add a new variable x0 and equation
x0 = 1. Convert each 0-equation into an equivalent 1-equation by adding x0 to it.
Then Ax = b has a weight t solution if and only if A′x′ = 1 has a weight t+ 1
solution.

In the non-parameterized setting, the “mixed” case is also reducible to Even.
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Remark 2.2. A system Ax = b over F2 with n variables can be transformed into
a system A′x′ = 0 such that Ax = b has a weight t solution if and only if A′x′ = 0
has a weight t + n + 1 solution: add a new variable x0 and a new equation
x0 = 1. Convert each 1-equation into an equivalent 0-equation by adding x0 to
it. Introduce n new variables y1, . . . , yn and replace the x0 = 1 equation by the
equations x0 ⊕ yi = 0 for i = 1, . . . , n.

The following lemma shows that any instance (A, b, t) can be easily trans-
formed into an equivalent instance of the form (A′, b′, kt) where each variable
occurs at most three times. The idea is to introduce k copies of each variable,
to replace each occurrence with a different copy, and to force the copies to take
equal values using additional equations.

Lemma 2.3. Let Ax = b be a system of linear equations and let k be the
maximum number of occurrences of any variable in it. Then an equivalent system
A′y = b′ with at most three occurrences of each variable can be constructed in
polynomial time, where equivalent means that any weight t solution for Ax = b
induces a weight kt solution for A′y = b′ and any weight t′ solution for A′y = b′

induces a weight t′/k solution for Ax = b.

Proof. For each variable xi in Ax = b, include k variables yi,1, . . . , yi,k in the
constructed system A′y = b′, and force them to take the same value by adding
the equations yi,j ⊕ yi,j+1 = 0 for 1 ≤ j < k. Additionally, modify Ax = b by
replacing the jth occurrence of xi by yi,j and add the resulting equations to
A′y = b′.

Any solution x of weight t for Ax = b induces a solution y of weight kt for
A′y = b′; this solution is defined by yi,j = xi. Conversely, in any solution y of
A′y = b′ the newly added equations enforce yi,j = yi,j′ . Thus y has weight kt for
some t, and x defined by xi = yi,1 is a solution of weight t for Ax = b. ut

As a consequence of Lemma 2.3 we can reduce all linear equation problems
to the case k ≤ 3. For example, it follows that LinEq≤,t,k is fpt reducible to
LinEq≤,t,k≤3 and that LinEq= is polynomial-time reducible to LinEq=,k≤3.

To facilitate the presentation of some of our proofs, it is convenient to consider
a more general problem in which each variable xi occurring in Ax = b has a
positive integer weight wi (encoded in unary). The weight t of a solution is the
sum of the weights of the variables assigned value 1. The next lemma shows that
the weighted case is polynomial-time reducible to the unweighted case (where all
variables have weight 1).

Lemma 2.4. Let Ax = b be a system of linear equations with variable weights
given in unary. Then an equivalent unweighted system A′y = b′ can be constructed
in polynomial time, where equivalent means that a weight t solution for Ax = b
induces a weight t solution for A′y = b′ and vice versa. Moreover,
(i) if all variables of Ax = b occur in exactly 2 equations then all variables of

A′y = b′ occur in exactly 2 equations.
(ii) if all variables of Ax = b occur in exactly 3 equations and have odd weight,

then all variables of A′y = b′ occur in exactly 3 equations.
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Proof. For each variable xi occurring in the input system Ax = b of weight
wi > 1, we include wi new variables yi,1, . . . , yi,wi

for the system A′y = b′. Pick
the first equation of Ax = b containing variable xi and substitute xi by yi,wi

in
it. Substitute the remaining occurrences of xi in Ax = b by yi,1. Additionally, for
1 ≤ j < wi include a new equation yi,j ⊕ yi,j+1 = 0.

This set of equations defines A′y = b′. The definition ensures that in any
solution to A′y = b′, for each i the variables yi,1, . . . , yi,wi all take the same value.
Thus, if any yi,j takes the value 1 then the entire set of these variables make a
net contribution of weight wi and are thus equivalent to the original weighted
variable xi in Ax = b.

Part (i) follows directly since each new variable appears exactly twice in this
case. For Part (ii), we modify the reduction and additionally include the equation
yi,2 ⊕ . . .⊕ yi,wi

= 0. This enforces every variable to appear exactly three times.
Moreover since wi − 1 is even, the additional equation is implied by the other
equations and hence does not affect the overall feasibility. ut

We close this section by giving a useful graph theoretical interpretation of
the linear equation problems.

Remark 2.5. We will consider systems Ax = b with m variables and n equations,
that is, A is an n×m matrix over F2. It will be convenient to interpret A as the
incidence matrix of a hypergraph. With this interpretation each equation becomes
a vertex and each variable becomes a hyperedge that consists of all vertices
(equations) in which it occurs. Note that this might give a multi-hypergraph
since different variables might occur in exactly the same equations.

A vertex vj will be called even if bj = 0, and odd if bj = 1. A solution of
weight t is a selection of t hyperedges that covers each even vertex with an even
number of hyperedges and each odd vertex with an odd number of hyperedges.
Observe that in the case that every variable appears exactly twice in the equation
system we get a standard multi-graph in which each edge connects two vertices.

3 At most three occurrences of each variable

This section is devoted to our main result showing that LinEq≤,t,k≤kmax
and

LinEq=,t,k≤kmax
are W[1]-hard for each kmax ≥ 3.

Theorem 3.1. LinEq≤,t,k≤3 and LinEq=,t,k≤3 are W[1]-hard. The hardness
even holds for the case that each variable occurs exactly three times.

To prove Theorem 3.1 we make use of the hypergraph interpretation of a
linear system of equations as explained in Remark 2.5. The key step is the design
of a selector gadget, which can be used to select a specified number of vertices
from a given vertex set V = {v1, . . . , vn}. Besides the vertices in V , the gadget
contains a special start vertex a and a set U of internal vertices, i.e., the vertex
set is V ∪U ∪{a}. We say that a set S of hyperedges activates a vertex if S covers
it an odd number of times. Further, we call S admissible if it activates the start
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vertex a but no internal vertex in U . Using this notation we will construct the
hyperedge set E of the gadget Selak,V in such a way that the minimal admissible
subsets S of E activate besides a exactly the k-element subsets of V .

The construction of Selak,V is illustrated in Figure 1. The set of internal
vertices is

U = {u`,i : 1 < ` < k ∧ ` ≤ i ≤ n− k + `}.
The intended semantics is that if a minimal admissible subset S covers the
vertex u`,i, then vi is the `th smallest of the activated vertices from V . The
hyperedge set of Selak,V is E =

⋃k−1
`=1 Ek, where

E1 =
{
{a, vi, u2,i′} : 1 < i < i′ ≤ n− k + 2

}
,

E` =
{
{u`,i, vi, u`+1,i′} : ` ≤ i < i′ ≤ n− k + `+ 1

}
for ` = 2, . . . , k − 2,

Ek−1 =
{
{uk−1,i, vi, vi′} : n− k ≤ i < i′ ≤ n

}
,

and the hyperedges in E` are called level ` hyperedges for ` = 1, . . . , k − 1. In the
weighted version Sela,wk,V of the gadget, all its hyperedges have weight w.

Lemma 3.2. Let V = {v1, . . . , vn} and let k and w be positive integers. For any
subset W ⊆ V of size k, there is an admissible set S ⊆ E of weight (k − 1)w for
the selector gadget Sela,wk,V that activates exactly a and the vertices in W. Moreover,
any admissible set S ⊆ E of weight less than (k + 1)w for Sela,wk,V has weight
exactly (k − 1)w and activates exactly k of the vertices in V.

Proof. For W = {vi1 , . . . , vik} with i1 < · · · < ik, consider the set that consists
of the hyperedge {a, vi1 , u2,i2}, the hyperedges {u`,i` , vi` , u`+1,i`+1

} for 1 < ` <
k−1, and the hyperedge {uk−1,ik−1

, vik−1
, vik}. This set is admissible, has weight

(k − 1)w and activates exactly the vertex a and the vertices in W .
To prove the moreover part, a straight-forward induction over ` = 1, . . . , k− 1

shows that any admissible set S of hyperedges must contain an odd number of
level ` hyperedges. Thus any such set S of weight less than (k + 1)w contains
exactly one hyperedge from each level, implying that S has weight (k − 1)w.
For ` = 1, . . . , k − 2 let vi` be the vertex in V covered by the level ` hyperedge
of S and let vik−1

and vik be the two vertices in V covered by the level k − 1
hyperedge of S. The construction of the gadget ensures that i1 < i2 < · · · < ik.
Hence, S activates exactly k vertices from V . ut

a
i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

` = 2

` = 3

` = 4

v1 v2 v3 v4 v5 v6 v7 v8 v9

Fig. 1. The vertices of the selector gadget Sela5,{v1,...,v9} and the minimal admissible
subset of hyperedges that leads to the activation of {v2, v4, v6, v7, v8}.
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Proof of Theorem 3.1. We reduce from the W[1]-complete clique problem which
asks whether a given graph has a clique of size k, where k is treated as parameter.
Let G = (V,E) and k be the given instance. We will construct an equation system
Ax = b with exactly one 1-equation where each variable occurs exactly three
times. Continuing with the hypergraph view, we will use several instances of the
selector gadget; each uses its own internal vertices. Besides the internal vertices,
the hypergraph contains one special start vertex a (which is the only odd vertex),
one vertex for each graph vertex in V , and one vertex for each graph edge in E.
Let w = k2 if k is odd, and w = k2 + 1 otherwise. Add the selector gadget Sela,wk,V

to the constructed hypergraph. For each graph vertex v ∈ V , let E(v) denote
the set of edges incident to it, and add the selector gadget Selv,1k−1,E(v). Its role
is to ensure that if v is selected by Sela,wk,V , then v must be adjacent to all other
selected vertices. See Fig. 2 for an illustration of this construction. As the selector
gadget has only hyperedges of size 3 and as w is odd, Lemma 2.4 implies that
the weights can be removed while maintaining 3-uniformity.

We show that for t = (k − 1)w + k(k − 2), the graph G has a clique of size k
iff the equation system described by the constructed hypergraph has a solution
of weight at most t.

If G contains a k-clique C, choose the admissible hyperedge subset of Sela,wk,V

that activates exactly the vertices in C. Then, for each clique vertex v ∈ C, add
the admissible hyperedge subset for Selv,1k−1,E(v) that activates {e ∈ E(v) : e ⊆ C}.
Combining these hyperedge sets yields a solution of weight t.

Now consider any solution to the equation system of weight at most t. As
(k+1)w ≥ k3+k2 > k3−k−1 ≥ t, Lemma 3.2 implies that this solution contains
exactly (k−1) hyperedges from Sela,wk,V , which activate a set C of exactly k vertices
in V . As these have to be covered an even number of times, each has to be covered
an odd number of times from within its selector gadget. So for each v ∈ C, the
solution must include at least k− 2 hyperedges of the selector gadget Selv,1k−1,E(v).
As this accounts for the remaining weight permitted by t, the solution cannot
include further hyperedges. In particular, all vertices from E that are covered at
all are graph edges that are incident to a vertex in C. As all vertices in E are
even, these edges have to be covered twice by the solution, implying that every
vertex v ∈ C has k − 1 neighbors in C, thus C is a k-clique.

a

v1 vi vj vn
Sela,wk,V

Selvi,1k−1,E(vi)
Sel

vj ,1

k−1,E(vj)

. . . . . . . . .
eij

Fig. 2. Hypergraph view of the equation system that has a weight t solution if and
only if the underlying graph G has a k-clique. The gadgets Selvi,1k−1,E(vi)

and Sel
vj ,1

k−1,E(vj)

share the vertex eij iff the graph edge eij connects the graph vertices vi and vj .
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Finally, note that the constructed equation system admits a solution of weight
at most t if and only if it admits one of weight exactly t. ut

Using the construction of Remark 2.1, we obtain alternative proofs that
Odd and Exact Odd are W[1]-hard. To generalize it to Exact Even, we can
multiply all weights by 2, add a new hyperedge {a} of weight 1, and ask for a
solution of weight 2t+ 1.

4 At most two occurrences of each variable

We show that the three problems are easier when every variable appears at
most twice in Ax = b. It turns out that these problems can be solved using
standard matching algorithms. LinEq≤,k≤2 and LinEq≥,k≤2 have deterministic
polynomial-time algorithms, whereas LinEq=,k≤2 has a randomized polynomial
time algorithm (in fact a randomized NC algorithm).

Firstly, we note that we can easily transform the instance to the case when
every variable in the system Ax = b appears in exactly two equations without
any change in the parameter t. We include the new equation

∑n
i=1

∑n
j=1Aijxj =∑n

i=1 bi (obtained by adding up all equations in Ax = b) to obtain a new system
A′x = b′. Note that Ax = b and A′x = b′ have identical solutions. Furthermore,
the new equation

∑n
i=1

∑n
j=1Aijxj =

∑n
i=1 bi has on its left-hand side precisely

the sum of all single occurrence variables of the system Ax = b. Hence every
variable in A′x = b′ occurs exactly twice.

As observed in Remark 2.5, when every variable appears exactly twice, the
system can be represented as an undirected multi-graph whose vertex set is the
set of equations and edges are the variables. Two vertices u and v are joined by
an edge e iff the variable e occurs in both equations u and v. We will use this
interpretation to design the algorithms in this subsection.

Theorem 4.1. LinEq≤,k≤2 ∈ P.

Proof. Given an instance (A, b, t) of LinEq≤,k≤2, we construct the graph G
associated with Ax = b. The set of edges with value 1 in a solution to the system
consists of an edge disjoint set of paths connecting the odd vertices by pairs and
possibly some edge disjoint cycles.

If there are odd vertices we do not need to consider the cycles, since we are
searching for a solution of minimum weight. Such a solution corresponds to a set
of edge disjoint paths of minimum total length pairing the odd vertices. This can
be obtained by computing the distance between all pairs of odd vertices in the
graph. With this we can construct a weighted clique in the following way: each
vertex in the clique represents an odd vertex in the graph. The edge between
two clique vertices is weighted with the distance between the corresponding odd
vertices in the original graph. We claim that a perfect matching with minimum
weight in the clique defines a solution of minimum weight in the system. To see
this, observe that if two edges {a1, a2} and {b1, b2} in the perfect matching of
minimum weight would correspond to paths that share at least one edge in G,
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then the total length of the shortest paths between a1 and one of the b-vertices
and a2 and the other b-vertex would be smaller than d(a1, a2) + d(b1, b2) since
the new paths would not contain the common edge. This implies that a perfect
matching of minimum weight corresponds to a minimum weight solution of the
system. Since minimum weight perfect matching can be solved in polynomial
time, the result follows.

When all vertices are even, we need to ensure that at least one variable is set
to 1. In this case, a minimum weight non-trivial solution is just a cycle in G with
a minimum number of edges. This also can be computed in polynomial time. ut

Using similar ideas we can show that the weight at least t version of the
problem can also be solved in polynomial time.

Theorem 4.2. LinEq≥,k≤2 ∈ P.

Proof. Given an instance (A, b, t) of LinEq≥,k≤2, we interpret Ax = b as a graph
G = (V,E) as in the previous result. W.l.o.g. we can suppose that all vertices
have degree at least 2. For v ∈ V let pd(v) be the parity of its degree and peq(v)
be the parity of the corresponding equation, i.e. peq(v) = 1 if v corresponds to
an odd equation and peq(v) = 0 otherwise.

Let B be the set of vertices whose degree parity does not coincide with peq(v).
That is, B = {v ∈ V : pd(v) 6= peq(v)}. If |B| is odd then there is no solution to
the system. In order to see this, observe that since every edge appears in exactly
two equations the system has a solution only if the set of vertices with peq(v) = 1
is even. We can partition the set of vertices v with peq(v) = 1 into two sets,
those having even degree and those having odd degree. This means:∣∣{v ∈ V : peq(v) = 1∧pd(v) = 1}

∣∣ ≡ ∣∣{v ∈ V : peq(v) = 1∧pd(v) = 0}
∣∣ mod 2

Since in every graph the set of vertices with odd degree is even, we can again
partition this set into those vertices in odd equations and those in even equations
and we get:∣∣{v ∈ V : pd(v) = 1∧peq(v) = 1}

∣∣ ≡ ∣∣{v ∈ V : pd(v) = 1∧peq(v) = 0}
∣∣ mod 2

Putting both congruences together we conclude that B is even.
The algorithm for finding a solution of maximum weight constructs a weighted

clique with the vertices of B in which every edge is weighted with the distance
in G between its two endpoints and finds a minimum weight perfect matching in
the clique, as in the previous theorem. The paths in G corresponding to the edges
in the minimum weight perfect matching are removed. Let us call this set E′. We
claim that the remaining edges, E \ E′, are a maximum weight solution for the
system. E \E′ is a solution because after removing the edges from the matching,
the parity of the degree of each vertex coincides with the parity of its equation.
If there are no vertices of odd degree after removing the edges, then the graph
is Eulerian and its edges form a solution. Otherwise a path starting in a vertex
with odd degree in G′ = (V,E \E′) and continuing along its edges will eventually
arrive to another vertex of odd degree. Removing the edges along this path, this
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process can be continued until all vertices have even degree. Observe that any
solution must include an edge disjoint pairing in G of all the vertices in B. This
proves that the solution of the algorithm has maximum weight. ut

We show next that LinEq=,k=2 is equivalent to Red-Blue Perfect Matching
(RBPM), a problem introduced by Papadimitriou et al. [12]. This problem is
defined in the following way: Given a graph G with blue and red edges and a
number t, is there a perfect matching in G with exactly t red edges? RBPM
can be solved in randomized NC [11], but until now, no deterministic polynomial
time algorithm for it is known. In fact, not even the parameterized version of
this problem (with t as parameter) is known to lie in FPT.

Theorem 4.3. LinEq=,k≤2 and RBPM are many-one equivalent under loga-
rithmic space reductions. This also holds if b = 0 is required for the instances
of LinEq=,k≤2.

Proof. Let Ax = b be a system of equations in which every variable appears
exactly twice and let G = (V,E) be its interpretation as a graph.

We first assume that b = 0. Let u be a solution of weight t. Since u selects
for each vertex v an even number of all edges incident to v, u corresponds to
a union of edge disjoint cycles in G with exactly t edges. Now consider the
graph G′ = (V ′, E′) that is obtained from G by expanding each vertex v ∈ V
with degree dv into dv new vertices v1, . . . , vdv

and connecting all pairs of these
vertices by red edges. The original edges incident with v in G are each connected
to one of the new vertices and are all colored blue (see Figure 3). Notice that
in G′, u corresponds to a union of vertex disjoint cycles with exactly 2t edges,
where each cycle consists of alternating red and blue edges. Hence, the t red edges
on these cycles form a matching that can be extended to a perfect matching of G′
by adding all blue edges that are not lying on any cycle of u. Conversely, any
perfect matching of G′ with t red edges yields a solution of weight t by taking its
symmetric difference with the set of all blue edges. This shows that Ax = b has
a solution of weight t if and only if G′ has a perfect matching with t red edges.

If G has r > 0 odd vertices, each solution u corresponds to a union of edge
disjoint cycles and paths with exactly t edges, where exactly the endpoints of
the paths are odd vertices. We construct G′ as before but expand each odd
vertex into a red clique of size dv + 1 by adding a special clique vertex v0 that is
connected via red edges to the other dv clique vertices v1, . . . , vdv

. In this graph,
each solution u corresponds to a union of edge disjoint cycles and paths with

v v3

v2
v1

v4

Fig. 3. Expansion of a vertex v of degree 4. The dotted edges are red edges.
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exactly t blue and t+ r/2 red edges, where exactly the endpoints of the paths
are special clique vertices. Similarly to the even case, the t+ r/2 red edges of u
form a matching that can be extended to a perfect matching of G′ by adding
all blue edges that are not lying on any cycle or path. Conversely, any perfect
matchingM in G′ has to match each special clique vertex via a red edge, implying
that an odd number of the blue edges connected to its clique does not belong
to M . Hence, if M has t+ r/2 red edges, taking the symmetric difference of M
with the set of all blue edges yields again a solution of weight t.

We reduce now the RBPM problem to a system of equations in which
every variable appears twice. Given a graph G = (V,E) with n vertices and
m red and blue edges, and an integer t ≤ m we can construct a system Ax = b
with n odd equations, each of them corresponding to a vertex and having the
incident edges as its variables. A perfect matching in G corresponds to a solution
of weight n

2 that assigns exactly one variable of each equation the value 1. Let G′
be the graph that is obtained from G by assigning weight n2 to each red edge.
Then G has a perfect matching with t red edges if and only if the weighted
system corresponding to G′ has a solution of weight exactly n

2 + t(n2 − 1). By
Lemma 2.4, the weights can be removed while maintaining the property that
each variable appears exactly twice.

The reduction can be adapted to a system of equations being all even by
adding a new weighted variable with weight n3 to each of the original equations
and setting all the equations to zero. Now there is a perfect matching with
t red edges in G if an only if there is a solution of weight n4 + t(n2 − 1) + n

2 .
Again by Lemma 2.4 the weighted variables can be transformed into weight one
variables. ut

Interestingly, whereas the forward reduction also works in the parameterized
setting (with t as parameter), this is not true for the converse reduction. Further,
observe that the variants of Red-Blue Perfect Matching in which we ask
for a matching with at most or at least t red edges are known to be in P. This
provides alternative proofs for Theorems 4.1 and 4.2.

As RBPM is in randomized NC [11] we obtain the following corollary.

Corollary 4.4. LinEq=,k≤2 ∈ RNC.

In the first part of the proof of the previous theorem, we identify a natural
graph problem as equivalent to RBPM: given an undirected graph G and an
integer t, is there a set of edge disjoint cycles in G containing exactly t edges?
We call this problem Exact Undirected Cycle Sum, in analogy to Exact
Cycle Sum which asks the same question for a directed graph G [12]. The latter
problem can be solved in RNC [3], but to our knowledge this was not previously
known for the undirected version.

Corollary 4.5. Exact Undirected Cycle Sum is many-one equivalent to
RBPM under logspace reductions and therefore also in RNC.

We close this section by showing that in the parameterized setting, a solution
of weight t can be found in fpt time when each variable occurs at most twice.
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Theorem 4.6. LinEq=,t,k≤2 ∈ FPT.

Proof. Let (A, b, t) be the input instance and let G = (V,E) be the corresponding
graph. If b = 0, let u0 be the empty solution. Otherwise, using the algorithm
of Theorem 4.1, we compute a solution u0 of minimum weight for Ax = b. If
|u0| ≥ t, we are done. Otherwise, observe that every solution of Ax = b can
be written as a sum (modulo 2) of u0 and some edge-disjoint cycles of G (that
might overlap with u0). To find a suitable set of cycles, we use the color coding
method introduced in [1]. Each edge in u0 receives its own unique color (recall
that |u0| < t). Let Cu0 be the set of colors of the edges in u0. The remaining
edges are colored uniformly at random using t new different colors. In case that
there is a solution of weight exactly t, the probability that all the edges in the
solution have different colors depends only on t and it is at least t!

tt . A color
pattern for a cycle is a sequence of colors to be encountered on the cycle. Now
consider each possible set C of disjoint color patterns (their number only depends
on t). For any set of disjoint cycles that realizes C, the corresponding solution
has weight equal to the number of colors that appear in C or in Cu0 but not in
both. If C leads to solutions of weight t, it remains to check if each color pattern
c1, . . . , ck in C can be realized in G. The latter can be checked dynamically by
computing sets Si(v), with v ∈ V and 0 ≤ i ≤ k, such that u ∈ Si(v) if and only
if there is a path from u to v that realizes c1, . . . , ci. Initially, S0(v) = {v} for
each v ∈ V . For i ∈ {1, . . . , k}, the set Si(v) is the union of all Si−1(u) for which
{u, v} is an edge of color ci. There is a cycle realizing c1, . . . , ck if and only if
there is a vertex v with v ∈ Sk(v).

The probabilistic part in the previous algorithm can be derandomized using
a perfect hash family as explained in [1]. ut

5 Using the equation size as an additional parameter

In this section we show that the weight at most t and the weight exactly t versions
of the problem become fixed parameter tractable when we treat the maximum
equation size s as an additional parameter. For the weight at least t version we
show in Section 6 that even LinEq≥,t is in FPT.

We call a solution u 6= 0 of a system Ax = b minimal if for any solution u′ 6= 0
with u′i ≤ ui for all i it holds that u′ = u.

Theorem 5.1. LinEq≤,t,s ∈ FPT. Moreover, for each instance, all minimal
solutions of weight at most t can be found in fpt time.

Proof. The algorithm traverses the following search tree to find all minimal
solutions of weight at most t. If b = 0, the first branch is to select a variable, set
it to 1 and continue with the resulting system over the remaining m− 1 variables.
This m-way branching is only needed once to avoid the trivial all zeroes solution.
If b 6= 0 and the number of variables set to 1 so far is smaller than t, we pick
the first equation with bj = 1 and branch over all variables that occur in this
equation. In each branch, we set the chosen variable to 1 and continue with the
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system over the remaining variables. As soon as all equations are satisfied by
setting the remaining variables to 0 (i.e., b = 0), we reach at a successful leaf
providing a solution of weight at most t. If already t variables have been set to 1
and b 6= 0, the current node is declared to be an unsuccessful leaf.

Since for every minimal solution u of weight at most t there is a path that
selects at each node one more variable from u, the tree enumerates any such
solution. Further, the tree can be traversed in fpt time as its depth is bounded
by t and the number of its leaves is bounded by st−1m. ut

To solve the weight exactly t case, we will again design a color coding algorithm
similar to that in Theorem 4.6, where minimal solutions take the role of cycles.
The following lemma shows that any solution u 6= 0 of a system Ax = 0 is the
sum of disjoint minimal solutions.

Lemma 5.2. Any solution u 6= 0 of a homogeneous system Ax = 0 over F2 is
the sum of disjoint minimal solutions.

Proof. Let u 6= 0 be any solution. If it is not minimal, let u′ be a minimal solution
that selects a proper subset of the variables selected by u. Then u⊕ u′ is also
a solution, is disjoint from u′, and has smaller weight than u. So an inductive
argument over the weight of u gives the lemma. ut

Next, we observe the following colored variant of Theorem 5.1. When the variables
are colored, we say that a solution u respects a set C of colors if u contains
exactly one variable of each color in C, and no other variables.

Lemma 5.3. Given a system Ax = b over F2, a coloring of its variables and
a set C of colors, all minimal solutions that respect C can be found in fpt time
when |C| and the maximum size s of the equations are treated as parameters.

Proof. The algorithm proceeds as the one of Theorem 5.1 with the following
modifications: At each branching, it only considers variables that have a color
in C that has not yet been used. And at each leaf it additionally checks that for
each color in C a variable has been selected. ut

Now, the following theorem can be proved along the same lines as Theorem 4.6.

Theorem 5.4. LinEq=,t,s ∈ FPT.

Proof. Let (A, b, t) be the given instance, and let u0 be a solution of minimum
weight for Ax = b, obtained using the algorithm of Theorem 5.1 (or by setting
u0 = 0 in case b = 0). If wt(u0) ≥ t, we are done. Otherwise we color each
variable selected by u0 with a unique color, and the remaining variables uniformly
at random using t additional colors. Any solution to Ax = b can be written
as u0 ⊕ u1, where u1 is a solution to Ax = 0. By Lemma 5.2, we can decompose
each such u1 as u1 =

⊕
u∈U u, where U is a set of disjoint minimal solutions to

Ax = 0. Again, the probability that all variables in a solution to Ax = 0 receive
distinct colors depends only on t and is at least t!

tt . A color pattern is a set of
colors. Iterating over all sets C of color patterns (their number only depends
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on t), we check if there are exactly t colors that occur in C or the variables
selected by u0 but not both, and if each color pattern in C is respected by some
minimal solution to Ax = 0. The latter is possible by Lemma 5.3. It remains to
derandomize this algorithm using a perfect hash family as in [1]. ut

We close this section by considering restrictions on the parameter s. In the case
s ≤ 2 we can assume that all equations contain exactly 2 variables. Let G be the
graph that has one vertex for each literal and an edge between each pair of literals
that are forced to be equivalent by some equation. If the system is satisfiable,
the connected components of G can be grouped into pairs of complementary
equivalence classes. Define the size of an equivalence class as the number of
positive literals in it. By choosing the one of smaller/larger size from each pair of
complementary equivalence classes gives a minimum/maximum weight solution.
Furthermore, the weight exactly t version reduces to Unary Subset Sum: It
suffices to check whether a subset of the size differences of all pairs sums up to t
minus the size of a minimum solution. As both Undirected Connectivity
and Unary Subset Sum can be solved in logarithmic space [13,7], we have the
upper bounds of the following theorem.

Theorem 5.5. LinEq≤,s≤2, LinEq=,s≤2, and LinEq≥,s≤2 are all L-complete.

The lower bounds follow from the fact that satisfiability of conjunctions of parities
of size at most 2 is hard for L [8]. Indeed, let Ax = b be a system on n variables
with s ≤ 2. For each variable xi, add a second variable x′i and the equation
xi ⊕ x′i = 1. This transformation preserves satisfiability, and every solution of
the resulting system has weight n.

Complementing Theorem 5.5, the following lemma shows that the general
case can be reduced to the case s ≤ 3, implying that all three problems remain
NP-hard under this restriction.

Lemma 5.6. Given a system of linear equations Ax = b and a number t we can
construct a new system A′y = b′ with equations of size at most 3 and a number t′
so that there is a solution of weight t for the first system if and only if there is a
solution of weight t′ for the second one.

Proof. An equation of size s, x1 ⊕ · · · ⊕ xs = b for b ∈ {0, 1} can be split,
adding two new variables y1 and y2, into the three equations x1 ⊕ x2 ⊕ y1 = 0,
y2 ⊕ · · · ⊕ xk = b and y1 ⊕ y2 = 1, of sizes 3, k − 1, and 2, respectively. Since in
any solution exactly one of the variables y1 and y2 is set to 1, the weight of a
solution in the new system increases by one. The splitting step can be repeated
until all equations have size at most three, increasing the weight for the new
solutions accordingly. ut

Corollary 5.7. LinEq≤,s≤3, LinEq=,s≤3, and LinEq≥,s≤3 are all NP-hard.

6 The weight at least t version

In this section, we show that finding solutions of weight at least t is fixed
parameter tractable. The key insight is that if every solution has small weight,
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then the number of variables that can be non-zero in any solution is bounded by
a function of t. The following lemma proves this for the homogeneous case.

Lemma 6.1. Let S be a subspace of Fn
2 . Define tS = max{wt(u) : u ∈ S} and

TS =
∣∣{p ∈ {1, . . . , n} : ∃u ∈ S s.t. up = 1

}∣∣, i.e., tS is the maximum weight of
a single vector in S and TS is the number of positions at which some vector in S
is non-zero. Then TS < 2tS.

Proof. We inductively show that for a subspace S of dimension dS , the number TS
is bounded by TS ≤ T (dS , tS) =

∑dS−1
i=0

⌊
tS
2i

⌋
. For dS = 0, the subspace S only

contains the all-zero vector, implying tS = 0 and TS = 0 = T (0, 0).
For dS ≥ 1, fix a vector u ∈ S of maximum weight. Let v̂ denote the projection

of a vector v ∈ S to the positions where u is zero, and let Ŝ = {v̂ : v ∈ S}. For
any v̂ ∈ Ŝ, the weight wt(v̂) is at most

⌊wt(u)
2

⌋
, as otherwise wt(u⊕ v) > wt(u),

contradicting the choice of u. This implies tŜ ≤
⌊
tS
2

⌋
. By construction, the

dimension dŜ of Ŝ is strictly less than that of S. Using the inductive hypothesis,
it follows that

TŜ ≤ T
(
dŜ , tŜ

)
≤ T

(
dS − 1,

⌊
tS
2

⌋)
≤

dS−2∑
i=0

⌊
tS

2i+1

⌋
=

dS−1∑
i=1

⌊
tS
2i

⌋
.

This implies TS = tS + TŜ ≤ T (dS , tS). ut

We remark that the bound given by Lemma 6.1 is tight, as for each t = 2k,
the basis {v0 . . . , vk} with vi ∈ F2t

2 defined by

vi,j =

{
1 if 2ij mod 2t < t

0 otherwise

generates a subspace S with TS = 2t− 1.

Lemma 6.2. There is a polynomial time kernelization algorithm for LinEq≥,t
that turns any instance into an equivalent one with less than 5t variables and
equations.

Proof. Let Ax = b be the given equation system and let t be the given weight
threshold. Using Gaussian elimination, we can decide whether Ax = b is feasible.
If not, output a trivial no-instance. Otherwise, compute a solution u for Ax = b
and a basis {v1, . . . , vd} for the solution space of Ax = 0. Any solution to Ax = b

is of the form u ⊕
∑d

i=1 αivi, where αi ∈ F2. If one of the solution vectors u
and u⊕ vi for i = 1, . . . , d has weight at least t, the algorithm outputs a trivial
yes-instance. Otherwise, all vectors in the span of {v1, . . . , vd} have weight at
most t+wt(u) ≤ 2t. By Lemma 6.1, this implies that less than 4t variables are
non-zero in any of {v1, . . . , vd}. It remains to remove the variables that are zero
in all of {u, v1, . . . , vd} and to remove all equations that are linear combinations
of earlier ones. Note that removing the values for everywhere-zero variables is a
bijection from the solutions of Ax = b to the solutions of the resulting equation
system that preserves weight. ut
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Combining Lemma 6.2 with a brute force search to enumerate all solutions of
the resulting instance gives the following theorem.

Theorem 6.3. LinEq≥,t ∈ FPT.

Acknowledgements. Gaurav Rattan and Oleg Verbitsky suggested and proved
Lemma 6.1, which allowed us improve the fpt algorithm for LinEq≥,t of the
conference version to the polynomial time kernelization of Lemma 6.2. We also
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