
Helly Circular-Arc Graph Isomorphism
Is in Logspace

Johannes Köbler, Sebastian Kuhnert∗, and Oleg Verbitsky∗∗

Humboldt-Universität zu Berlin, Institut für Informatik

Abstract. We present logspace algorithms for the canonical labeling
problem and the representation problem of Helly circular-arc (HCA)
graphs. The first step is a reduction to canonical labeling and represen-
tation of interval intersection matrices. In a second step, the Δ trees
employed in McConnell’s linear time representation algorithm for interval
matrices are adapted to the logspace setting and endowed with additional
information to allow canonization. As a consequence, the isomorphism and
recognition problems for HCA graphs turn out to be logspace complete.

1 Introduction

A graph G is circular-arc if each vertex v ∈ V (G) can be assigned an arc ρ(v) on
a circle such that two vertices are adjacent if and only if their arcs intersect. We
call any such assignment ρ a circular-arc representation of G and the arc system
ρ(G) = {ρ(v) | v ∈ V (G)} a circular-arc model ofG.G is Helly circular-arc (HCA)
if G has a representation ρ such that the arcs of the vertices in every clique C
of G have non-empty intersection. We call such a ρ an HCA representation and
ρ(G) an HCA model of G. In this article, we solve the canonical representation
problem for HCA graphs in logspace. That is, we give a logspace algorithm that
computes for any given HCA graph G an HCA representation ρG such that
isomorphic HCA graphs G and H receive identical HCA models ρG(G) = ρH(H).
If the input graph G is not HCA, the algorithm will detect this.

Previous results. HCA graphs were introduced by Gavril under the name of
Θ circular-arc graphs [Gav74]. Gavril gave an O(n3) time representation algo-
rithm for HCA graphs. Hsu improved this to O(nm) [Hsu95]. Recently, Joeris
et al. gave a linear time algorithm [JLMSS11]. The fastest known isomor-
phism algorithm for HCA graphs is due to Curtis et al. and works in linear
time [CLMNSSS13]. Chen gave a parallel AC2 algorithm [Che96]. Note that,
though a logspace algorithm can take time bounded by a polynomial of high
degree, the logspace solvability implies that the problem can be solved even in
logarithmic time by a CRCW PRAM with polynomially many processors.
∗ Supported by DFG grant KO 1053/7–1.
∗∗ Supported by DFG grant VE 652/1–1. On leave from the Institute for Applied

Problems of Mechanics and Mathematics, Lviv, Ukraine.

2 Johannes Köbler, Sebastian Kuhnert, and Oleg Verbitsky

For the special case of interval graphs (which are easily seen to be HCA),
the linear time algorithms by Booth and Lueker for recognition [BL76] and
isomorphism [LB79] have been known for many decades. Recently, these have
been supplemented with a logspace algorithm for canonical representation of
interval graphs [KKLV11].

Generalizing these results to the class of all circular-arc graphs remains a
challenging problem. While the representation problem for this class is solved in
linear time by McConnell [McC03], no polynomial-time isomorphism test for
circular-arc graphs is currently known (see the discussion in [CLMNSSS13],
where a counterexample to the correctness of Hsu’s O(nm) time isomorphism
algorithm [Hsu95] is given). The history of the isomorphism problem for circular-
arc graphs is surveyed in more detail by Uehara [Ueh13].

This motivates the persistent interest in isomorphism algorithms for subclasses
of circular-arc graphs. Besides HCA graphs, mainly proper circular-arc graphs
and concave-round graphs have been studied. The isomorphism problem for
these two classes can be solved in linear time [LSS08; CLMNSSS13] and in
logspace [KKV12pca].

Overview of our results. Our logspace algorithm for canonical representation of
HCA graphs proceeds in several steps; see Fig. 1.

Hsu observed that the structure of certain circular-arc graphs G allows
to prescribe the intersection structure of each pair of arcs in a circular-arc
representation of G as di (disjoint), cd (contained), cs (contains), cc (circle
cover), and ov (overlap) [Hsu95]. We store this information in the neighborhood
matrix λG of G (for more details see Section 2).

The motivation for switching to the matrix λG is that flipping the arc of a
vertex (i.e., exchanging its two start and end points) can be mimicked in λG by
substituting some of its entries (details are given in Section 3). We show how
to identify a subset X ⊆ V (G) such that flipping the arcs of all vertices in X
results in a matrix λ(X)

G that can be realized by an interval system. We choose X
as an inclusion-maximal clique of G that is the common neighborhood of two
vertices, and prove that at least one such clique can be found in logspace.

In order to compute an HCA representation for G from the matrix λ(X)
G we

give a logspace algorithm solving the representation problem of interval matrices.
Let an intersection matrix be a quadratic matrix µ = (µi,j)i 6=j∈V with entries

GHCA graph

λGHCA matrix

λinterval matrix

Δ(λ)colored Δ tree Δ̂(λ) canonical Δ treetree
canonization

I
λ̂

interval model

A
λ̂G

HCA model

A
Ĝ

HCA model

=

Fig. 1. Overview of the canonical representation algorithm for HCA graphs

Helly Circular-Arc Graph Isomorphism Is in Logspace 3

di, cs, cd, cc, ov. We call the elements of V the vertices of µ and we assume
that V is linearly ordered. An intersection matrix µ is called CA matrix if it
is possible to assign to each vertex i ∈ V an arc ρ(i) on a circle such that for
any pair of vertices i 6= j ∈ V the arcs ρ(i) and ρ(j) intersect in accordance
with the entry µi,j . A CA matrix µ is called an HCA matrix (interval matrix) if
the arc system ρ(V) = {ρ(i) | i ∈ V } is Helly (does not cover the whole circle,
respectively).

Our logspace algorithm for computing a representation of a given interval
matrix is described in Section 4. McConnell gave a linear time algorithm for this
problem as part of his representation algorithm for circular-arc graphs [McC03].
He introduced the Δ tree of an interval matrix to capture all possible interval
representations. Our key contribution here is to compute the Δ tree in logspace.

In Section 5, we show how to compute canonical representations of interval
matrices. This is a significant extension of McConnell’s algorithm, which only
deals with representation. We implement this step as a reduction to colored tree
canonization, which can be solved in logspace using Lindell’s algorithm [Lin92].

2 Preliminaries

A circular-arc system A is a set of non-empty arcs on a circle. An interval
system I is a set of non-empty intervals on a line. Equivalently, we can define
an interval system as a circular-arc system I having the special property that
there is at least one point on the circle that is not covered by any arc of I. A
set system S has the Helly property if every subsystem S ′ ⊆ S with non-empty
pairwise intersections has a non-empty overall intersection, i.e., (∀A,B ∈ S ′ :
A ∩ B 6= ∅) ⇒

⋂
A∈S′ A 6= ∅. It is easy to see that every interval system

has the Helly property, but that there are non-Helly circular-arc systems; see
Figure 2 (a) for an example. To keep notation concise, we use CA as a shorthand
for circular-arc and HCA as an abbreviation of Helly circular-arc.

Two sets A and B intersect if A ∩ B 6= ∅. They overlap (written A G B) if
additionally A \B 6= ∅ and B \A 6= ∅.

Given a set system S, its intersection graph I(S) has one vertex for each
set A ∈ S, and two nodes A,B ∈ S are adjacent if and only if A ∩ B 6= ∅.
A graph G is a CA graph if there is a CA system A such that G ∼= I(A). In this
case, A is called a CA model of G, and an isomorphism ρ : V (G)→ A from G
to I(A) is called a CA representation of G. HCA graphs and interval graphs are
defined analogously, and so are their respective models and representations.

Given a graph G and a vertex v ∈ V (G), let NG[v] denote the closed neigh-
borhood of v, i.e., the set of vertices with distance at most 1 from v. The common
neighborhood of two vertices u, v ∈ V (G) is NG[u, v] = NG[u] ∩ NG[v]. If G is
understood from the context, the index will be omitted. A vertex v ∈ V (G) is
universal if N [v] = V (G). Two vertices u, v ∈ V (G) are twins if N [u] = N [v]. A
twin class is an inclusion-maximal set U ⊆ V (G) such that all pairs of vertices
in U are twins.

4 Johannes Köbler, Sebastian Kuhnert, and Oleg Verbitsky

(a) (b) (c)

Fig. 2. (a) A non-HCA model of the HCA graph K3. (b) Let Gn denote the split graph
on n + n vertices consisting of an n-clique C and a set S of n independent vertices,
which are connected by the bipartite complement of a perfect matching between C
and S. Every Gn is HCA; the figure shows an HCA model of G4. Note that Gn has
exactly n+ 1 maxcliques, each of size n, and the maxclique C cannot be described as
intersection or difference of less than n neighborhoods. (c) The complement graph Hn
of n independent edges is CA. It has 2n maxcliques Ci, each containing exactly one
endpoint of each edge in Hn. Since the common neighborhood of fewer than n vertices
of Hn contains both endpoints of at least one edge in Hn, no maxclique Ci can be
described in this way. The figure shows a CA model of H4.

Let µ = (µi,j)i 6=j∈V be a quadratic matrix. We call the elements of V the
vertices of µ and we assume that V is linearly ordered. Another quadratic
matrix λ = (λi,j)i6=j∈U is isomorphic to µ (written λ ∼= µ) if there is a bijection
σ : U → V such that λi,j = µσ(i),σ(j) for all i 6= j ∈ U . Note that two graphs are
isomorphic if and only if their adjacency matrices are isomorphic.

An intersection matrix is a matrix µ = (µu,v)u 6=v∈V with entries µu,v ∈
{di, cs, cd, cc, ov} that satisfies (a) µu,v = cd⇔ µv,u = cs and (b) µu,v = µv,u
in all other cases. Our interest is in intersection matrices that describe the
intersection types between the arcs of a CA system. The following notation was
introduced in [LS09].

Definition 2.1. Let A be a CA system such that no single arc C ∈ A covers
the whole circle and the endpoints of all arcs C ∈ A are pairwise distinct. The
intersection matrix µA = (µA,B)A 6=B∈A of A is defined by the entries

µA,B :=

di if A ∩B = ∅;
cd if A (B;
cs if A) B;
cc if A G B and A and B jointly cover the circle;
ov if A G B but A and B do not jointly cover the circle.

The intersection matrix µI of an interval system I with pairwise distinct endpoints
is defined similarly, using only the entries di, cd, cs and ov (for A G B).
A matrix µ is a CA matrix if there is a CA system A such that µ ∼= µA.
HCA matrices and interval matrices are defined analogously.

Helly Circular-Arc Graph Isomorphism Is in Logspace 5

Definition 2.2. Given a graph G, its neighborhood matrix λG = (λu,v)u 6=v∈V (G)
is defined by the entries

λu,v :=

di if {u, v} /∈ E(G);
cd if N [u] (N [v];
cs if N [u]) N [v];
cc if N [u] G N [v], N [u] ∪N [v] = V,

and ∀w ∈ N [u] \N [v] : N [w] ⊂ N [u],
and ∀w ∈ N [v] \N [u] : N [w] ⊂ N [v];

ov otherwise.

Note that λG can be viewed as an augmented adjacency matrix, as 0 entries
correspond to di and 1 entries are subdivided into four different categories. The
underlying graph of an intersection matrix µ = (µu,v)u6=v∈V is denoted by Gµ
and consists of the vertices V and the edges

{
{u, v}

∣∣ µu,v 6= di
}
.

Following [Hsu95], we call a CA representation ρ : V (G)→ A of G normalized
if ρ is an isomorphism between the neighborhood matrix λG and the CA matrix µA.
Hsu provides an algorithm that transforms any CA representation of a CA graph
with certain properties into a normalized representation, obtaining the following.

Lemma 2.3 ([Hsu95]). Any CA graph G without twins and universal vertices
has a normalized CA representation.

All normalized CA representations have a property that is called stable by Joeris
et al. who prove that every stable CA representation of an HCA graph G yields
an HCA model [JLMSS11]. This implies the following.

Lemma 2.4. Any normalized CA representation of an HCA graph G without
twins and universal vertices provides an HCA model for G.

As usual, L is the class of all languages decidable by Turing machines with
a read-only input tape using only O(logN) space on the working tapes, where
N is the input size. FL is the class of all functions computable by such machines
that additionally have a write-only output tape. Note that FL is closed under
composition: To compute f(g(x)) for f, g ∈ FL, simulate the Turing machine for f
and keep track of the position of its input head. Every time this simulation needs
a character from f ’s input tape, simulate the Turing machine for g on input x
until it outputs the required character. Note also that g can first output a copy
of its input x and afterwards compute additional information to be used by f .
This construction can be iterated a constant number of times, still preserving
the logarithmic space bound. This closure property allows us to present logspace
algorithms in a modular way.

Lemma 2.5. There is a logspace reduction from the (canonical) HCA represen-
tation problem for HCA graphs G to the (canonical) CA representation problem
of vertex-colored HCA matrices.

6 Johannes Köbler, Sebastian Kuhnert, and Oleg Verbitsky

Proof. First consider the case that G is twin-free and has no universal vertex.
Compute the neighborhood matrix λG. By Lemma 2.3, λG admits a normalized
CA representation ρ. Any such ρ is Helly by Lemma 2.4, and easily seen to be
also a HCA representation of G. If ρ is canonical for (colored) matrices, it is also
canonical for (colored) graphs, as G ∼= H is equivalent to λG ∼= λH .

If the input graph G contains twins, apply the above algorithm to the graph G′
that is obtained from G by removing all but one vertex from each twin class.
Let ρ′ be the computed representation of G′. Then define a representation ρ of G
by ρ(v) = ρ′(v̂), where v̂ is the representative of the twin class of v that is present
in G′. To preserve canonicity, color each vertex of G′ with the number of twins
it stands for; then G ∼= H is equivalent to G′ ∼= H ′. It remains to observe that
universal vertices can be likewise removed before computing the neighborhood
matrix, with arcs added for them afterwards. ut

3 Transforming HCA Matrices into Interval Matrices

In this section we describe a logspace reduction of the (canonical) CA repre-
sentation problem for HCA matrices to the (canonical) representation problem
of interval matrices. Note that it suffices for our purposes to obtain any (not
necessarily Helly) representation: Lemma 2.4 implies that the representation is
Helly if the HCA matrix is the neighborhood matrix of some HCA graph G.

Following McConnell, we can transform a CA system A into an interval
system A(X) = {C ∈ A | x 6∈ C} ∪ {C̃ | C ∈ A, x ∈ C} by choosing any point x
on the circle that is different from all endpoints of A and flipping all the arcs
in the set X = {C ∈ A | x ∈ C}. Flipping an arc C just means that we replace
it with the arc C̃ having the same endpoints as C but covering the opposite
part of the circle. McConnell observed that flipping arcs of A corresponds to the
replacements in the CA matrix µA (cf. Definition 2.1) that are given in Table 1.
Denote the result of flipping a subset X of the vertices of a CA matrix λ as λ(X).
Note that λ(X) will become an interval matrix if exactly the arcs that contain a
point x are flipped.

Table 1. The effect of flipping arcs of a CA system A on the entries of its CA matrix
µA = (µA,B)A 6=B∈A

µA,B di cd cs cc ov
µÃ,B cs cc di cd ov
µA,B̃ cd di cc cs ov
µÃ,B̃ cc cs cd di ov

The rules described in Table 1 can be applied to any CA matrix µ =
(µi,j)i6=j∈V . To ensure that the resulting matrix µ(X) is interval, a suitable
vertex set X ⊆ V has to be used. If we don’t have a CA representation of µ, the
set X has to be identified only from the structure of µ. If µ is HCA, the underlying

Helly Circular-Arc Graph Isomorphism Is in Logspace 7

graph Gµ is also HCA. The following fact implies that any inclusion-maximal
clique (maxclique for short) C of Gµ can be used as X in this case.

Fact 3.1 Let ρ : V (G)→ A be any HCA representation of a graph G and let C
be any maxclique of G. Then there is a point x in the HCA model A such that
no arc has x as its endpoint and {ρ(v) | v ∈ C} = {A ∈ A | x ∈ A}.

Proof. As C is a clique, the arcs in ρ(C) = {ρ(v) | v ∈ C} intersect pairwise.
As A is Helly,

⋂
v∈C ρ(v) is non-empty. By maximality of C, no further arc can

contain any point x in this intersection. ut

In an interval graph, all maxcliques can be characterized as the common
neighborhood of two vertices. This property was used in [KKLV11] to reduce
the canonical representation problem of interval graphs to that of interval hy-
pergraphs. The same approach is not possible for HCA graphs, as they may
contain maxcliques that cannot be characterized as the intersection or difference
of constantly many neighborhoods; see Fig. 2 (b) for an example. However, at
least one maxclique can be found in this way.

Theorem 3.2. Let G be an HCA graph. Then there are u, v ∈ V (G) (possibly
u = v) such that N [u, v] is a maxclique.

We remark that general CA graphs do not necessarily have such a maxclique, see
Fig. 2 (c) for an example.

Proof. Let λG = (λu,v)u6=v∈V (G) be the neighborhood matrix and ρ : V (G)→ A
a normalized HCA representation of G. In order to find two vertices u, v ∈ V (G)
such that N [u, v] is a maxclique, we start with an arbitrary vertex v such that
there is no vertex w with λv,w = cs (i.e., 6 ∃w : N [w] (N [v]). Note that there
cannot be a vertex w′ with λv,w′ = cc, since this would imply that there is a
vertex w ∈ N [v] \N [w′] (because N [w′] G N [v]) with N [w] (N [v] (we can rule
out equality because w′ ∈ N [v] \N [u′]).

In case there is no vertex w with λv,w = ov, N [v] is a maxclique. This follows
since λv,w = cd for all w ∈ N(v) and hence, for all w,w′ ∈ N [v] it holds that
w ∈ N [v] ⊆ N [w′].

Otherwise, we choose a vertex u ∈ N [v] with λv,u = ov, such that N [u, v]
is minimal w.r.t. inclusion and claim that N [u, v] is a maxclique. In order
to derive a contradiction assume that there exist w,w′ ∈ N [u, v] such that
w /∈ N [w′]. If λv,w = cd (or λv,w′ = cd) then it follows that w′ ∈ N [v] ⊆ N [w]
(or w ∈ N [v] ⊆ N [w′]), a contradiction.

If λv,w = λv,w′ = ov then ρ(w) ∩ ρ(w′) = ∅ and ρ(w) G ρ(v) G ρ(w′).
Since ρ(u) G ρ(v) it follows that ρ(u) overlaps ρ(v) from the same side as one
of ρ(w) and ρ(w′), say ρ(w). Because of w′ ∈ N [u, v] \ N [w] and the Helly
property, it follows that ρ(u) ∩ ρ(v) ∩ ρ(w′) 6= ∅ but ρ(w) ∩ ρ(v) ∩ ρ(w′) = ∅,
implying that ρ(v) ∩ ρ(w) ⊆ ρ(v) ∩ ρ(u). Using again the Helly property, it now
follows for any x ∈ N [w, v] that ρ(v) ∩ ρ(w) ∩ ρ(x) 6= ∅ which in turn implies
that ρ(v) ∩ ρ(u) ∩ ρ(x) 6= ∅. Hence, we get the inclusion N [w, v] ⊆ N [u, v],
contradicting the choice of u, since w′ ∈ N [u, v] \N [w, v]. ut

8 Johannes Köbler, Sebastian Kuhnert, and Oleg Verbitsky

Theorem 3.3. The (canonical) CA representation problem for vertex-colored
HCA matrices can be reduced in logspace to the (canonical) representation problem
for vertex-colored interval matrices.
Proof. Given an HCA matrix µ = (µu,v)u,v∈V , the algorithm works as follows.
1. Find all pairs u, v ∈ V such that N [u, v] is a maxclique in Gµ (allowing
u = v). By Theorem 3.2 at least one such pair exists. Denote the set of all
maxcliques that are found in this way byM.

2. For each M ∈M: Compute the interval matrix µ(M) and mark the flipped
vertices with a new color. Compute a (canonical) interval representation
of µ(M) and flip back all colored arcs, obtaining a CA representation ρµ,M
of µ.

3. Among the ρµ,M computed in the previous step, choose ρµ as one that results
in a lexicographically least CA model ρµ,M (µ). Output ρµ.

To see that ρµ is canonical if the interval representation of µ(M) is canonical,
consider any isomorphic copy µ′ = ϕ(µ). Clearly, M = NGµ [u, v] is a maxclique
of Gµ if and only if M ′ = NGµ′ [ϕ(u), ϕ(v)] = ϕ(M) is a maxclique of Gµ′ . Note
that ϕ is also an isomorphism between µ(M) and µ′(M ′). Thus the latter two
receive the same colored canonical interval model I. As the CA models ρµ,M (µ)
and ρµ′,M ′(µ′) are both obtained from I by flipping back the colored arcs, it
follows that ρµ,M (µ) = ρµ′,M ′(µ′). Hence, µ and µ′ receive the same CA model
ρµ(µ) = min{ρµ,M (µ) |M ∈M} = min{ρµ′,ϕ(M)(µ′) |M ∈M} = ρµ′(µ′). ut

4 Finding Representations of Interval Matrices in
Logspace

McConnell [McC03] showed how to find interval representations of interval
matrices in linear time. In this section, we apply some of his techniques to solve
this task in logspace.

Given an intersection matrix λ = (λu,v)u 6=v∈V , define Gov,di as the undirected
graph on the vertex set V with edges {u, v} for each pair with λu,v ∈ {ov, di}.
Similarly, define Dcd (resp. Dcs) as the directed graph on V with arrows (u, v)
for each pair with λu,v = cd (resp. λu,v = cs).

A transitive orientation of an undirected graph is an assignment of directions
to all edges such that the resulting set of arrows is transitive. An interval
orientation of an intersection matrix λ is a transitive orientation Dov,di of Gov,di
that remains transitive when restricted to Gdi and that satisfies

λu,v = di ∧ λu,w = λv,w = ov⇒ either (u,w) ∈ Dov,di or (v, w) ∈ Dov,di (1)

The last condition requires that if w stays in overlap relation with two disjoint
vertices u, v, then w has to be arranged in between u and v. Any interval
representation ρ of λ induces an interval orientation of λ: An edge {u, v} of Gov,di
is oriented as (u, v) if and only if ρ(u) < ρ(v), i.e., if the interval ρ(u) starts left of
the interval ρ(v). The following lemma shows the converse, implying that interval
orientations are in 1-1 correspondence with interval representations (provided
that we fix the set of endpoints as {0, . . . , 2n− 1}).

Helly Circular-Arc Graph Isomorphism Is in Logspace 9

(a)
ρ(u)

ρ(v)

ρ(w)

(b)
ρ(u)

ρ(v)

ρ(w)

(c)
ρ(u)

ρ(v)

ρ(w)

Fig. 3. In all three cases of Definition 4.2 there is no way to place ρ(u) between ρ(v)
and ρ(w).

Lemma 4.1. Let λ be an interval matrix, and let Dov,di be an interval orientation
of λ. Then there exists an interval representation ρ of λ that induces the interval
orientation Dov,di. Moreover, ρ is computable in logspace on input λ and Dov,di.

Proof sketch. Let λ = (λu,v)u 6=v∈V . To obtain ρ, order the left endpoints accord-
ing to Dov,di ∪Dcs and the right endpoints according to Dov,di ∪Dcd. Interleave
these two linear orders such that the relationships in λ are obeyed. ut

By Lemma 4.1 it suffices to compute an interval orientation Dov,di of a given
interval matrix λ to get an interval representation of λ.

Definition 4.2 (cf. [McC03]). Let λ be an intersection matrix, and let {u, v}
and {u,w} be edges in Gov,di. The binary relation Δ contains the entries (u, v)Δ(u,w)
and (v, u)Δ(w, u) if one of the following holds:
(a) λu,v = λu,w = di and λv,w 6= di
(b) λu,v, λu,w ∈ {ov, di} and λv,w ∈ {cd, cs}
(c) λu,v = di and λu,w = λv,w = ov

If any of these three condition holds true, then in any interval representation ρ
of λ, the intervals ρ(v) and ρ(w) must be on the same side of ρ(u); see Fig. 3. In
other words, any interval orientation Dov,di of λ must contain (u, v) if and only if
it contains (u,w). This is the rationale for the following definition: Δ implication
classes are the equivalence classes of the symmetric transitive closure of Δ. The
union of a Δ implication class and its transpose is called Δ color class and can
be viewed as a set of (undirected) edges in Gov,di.

Lemma 4.3 ([McC03]). Each interval orientation of λ contains exactly one
Δ implication class from each Δ color class.

This implies that (u, v) and (v, u) cannot be in the same Δ implication class.
However, not any selection of one Δ implication class from each Δ color class
yields an interval orientation of λ. To find a valid selection, we need to consider
the Δ tree of λ.

A module of a matrix λ = (λu,v)u 6=v∈V is a subset U ⊆ V that is not
distinguished by any vertex outside U , i.e., for any u 6= v ∈ U and w ∈ V \ U
it holds λu,w = λv,w and λw,u = λw,v. McConnell [McC03] calls a module U
of an intersection matrix λ a Δ module, if it is a clique in the corresponding
intersection graph (i.e., λu,v 6= di for all u 6= v ∈ U) or if there is no v ∈ V \ U
such that λv,u = ov for all u ∈ U . The Δ modules of an intersection matrix form
a tree decomposable family [McC03]. The resulting decomposition tree, i.e., the

10 Johannes Köbler, Sebastian Kuhnert, and Oleg Verbitsky

transitive reduction of the containment relation among strong Δ modules U (i.e.,
U does not overlap any other Δ module), is called Δ tree of λ. The leaves of
the Δ tree are trivial modules consisting of single vertices. An inner node in
the Δ tree is called degenerate if taking the union of any of its children gives
a Δ module, and prime otherwise. If U is an inner node in the Δ tree and
W1, . . . ,Wk are its children, the quotient of λ at U is the submatrix λ[U] of λ on
the vertices W = {w1, . . . , wk} with wi ∈ Wi. As the Wi are disjoint modules,
λ[U] does not depend on the actual choice of the wi. In the quotient matrix of
a degenerate node, its children are either in pairwise ov, in pairwise di, or in
pairwise cd/cs relation [McC03]. Hence, the inner nodes of the Δ tree can be
classified as prime, disjoint, overlap or containment nodes.

The following results from [McC03] show that the Δ tree provides a compact
representation of all possible interval orientations of λ.

Lemma 4.4 ([McC03]). The set of vertices spanned by a Δ color class in an
interval intersection matrix λ is a Δ module of λ.

Lemma 4.5 ([McC03]). A set of edges of Gov,di is a Δ color class if and only
if it is the set of edges of Gov,di connecting all children of a prime node or a pair
of children of a degenerate node in the Δ tree.

Lemma 4.6 ([McC03]). Any acyclic union of Δ implication classes gives an
interval orientation of λ.

The next lemma reduces the problem of computing an interval orientation
of λ to the problem of computing interval orientations of the quotient matrices
of the inner nodes of the Δ tree.

Lemma 4.7. Let λ be an intersection matrix, and let U1, . . . , Uc be the inner
nodes of its Δ tree. Any sequence of interval orientations D1, . . . , Dc for the
quotient matrices λ[U1], . . . , λ[Uc] induces an interval orientation D of λ, which
can be computed in logspace.

Proof. By Lemma 4.5, there is a one-one correspondence between the Δ color
classes and certain subsets of children of the nodes U1, . . . , Uc (more precisely,
any pair of children if Ua is degenerate and all children if Ua is prime). For
each node Ua, the interval orientation Da of λ[Ua] picks exactly one of the two
Δ implication classes in all the color classes associated with its children. Define D
as the union of these implication classes; this construction is clearly possible
in logspace. By Lemma 4.6 it suffices to show that D is acyclic. This can be
seen as follows: By Lemma 4.1, the interval orientations Da induce interval
representations ρa of the quotient matrices. For each directed edge (u, v) ∈ D,
let Ua(u,v) denote the Δ tree node that has u and v in different children. Then
(u, v) ∈ Da(u,v) and thus ρa(u,v)(u) < ρa(u,v)(v). Hence, any edge (u, v) leads
further right in the smallest Δ tree node that contains it. This implies that D is
acyclic. ut

Helly Circular-Arc Graph Isomorphism Is in Logspace 11

As soon as we have the Δ tree, it’s very easy to compute interval orientations
for the quotient matrices corresponding to its inner nodes U . If U is prime, we
can take any of the two implication classes of the color class connecting all its
children. If U is degenerate of type overlap or disjoint, any linear ordering of its
children provides an interval orientation for its quotient matrix. Finally, if U is
of type containment, no edges have to be oriented.

Theorem 4.8. The Δ implication classes, the Δ color classes, and the Δ tree
of a given intersection matrix λ can be computed in logspace.

Proof. The Δ implication classes (and thus the Δ color classes) can be found in
logspace using Reingold’s reachability algorithm on an auxiliary graph that has
the pairs (u, v) with λu,v ∈ {ov, di} as vertices and the symmetric closure of the
Δ relation (Definition 4.2) as edges.

To compute the Δ tree, consider the overlap graph O having as its nodes the
vertex sets spanned by the Δ color classes and the overlap relation on these nodes
as its edge set. By Lemma 4.4, the nodes of O are Δ modules. Also, the connected
components of O correspond to Δ modules, as these form a tree decomposable
family.

The prime Δ modules and the degenerate Δ modules of type overlap and
disjoint correspond to the connected components of O as they are not overlapped
by another Δ module and hence form strong Δ modules. Note that the prime
Δ modules and the degenerate Δ modules of type overlap and disjoint having
only two children appear as isolated nodes in O. The leaf nodes of the Δ tree are
just the vertices of λ.

It remains to compute the degenerate nodes of type containment. We first
argue that every containment node is the union of certain non-containment
nodes (which are already computed). Indeed, consider any containment node U
in the Δ tree. The containment structure of U induces a linear order on its
children U1, . . . , Uc, i.e., for all ua ∈ Ua and ub ∈ Ub with a < b it holds that
λua,ub = cd (and λub,ua = cs). Notice that no Ua can be a containment node:
Otherwise, let U ′1 . . . , U ′c′ be the children of Ua, again ordered by containment.
Consider the sequence U1, . . . , Ua−1, U

′
1, . . . , U

′
c′ , Ua+1, . . . , Uc. It is not hard to

see that the union of the sets in any consecutive subsequence is a Δ module, and
some of these would overlap Ua, a contradiction.

To compute the containment nodes of the Δ tree, define an auxiliary graph C
with all non-containment nodes as vertices, putting edges between two nodes
U1, U2 if

∀u1 ∈ U1, u2 ∈ U2, u3 /∈ U1 ∪ U2 : λu1,u2 ∈ {cd, cs} ∧ λu1,u3 = λu2,u3 .

This results in edges between children of containment nodes that are adjacent
in the sequence mentioned above. The connected components of C (which are
paths) correspond to the containment nodes, which can thus be computed in
logspace.

Finally, compute the edges of the Δ tree as the transitive reduction of the
containment relation among the nodes. ut

12 Johannes Köbler, Sebastian Kuhnert, and Oleg Verbitsky

By combining Theorem 4.8 with Lemma 4.1 we obtain the following result.

Corollary 4.9. Given an intersection matrix λ, an interval representation for
it can be computed in logspace.

5 Finding Canonical Representations for Interval
Matrices

In this section, we describe a logspace algorithm for computing a canonical
representation of a given interval matrix λ. The main task is to choose between
the different possible interval orientations of the quotient matrices corresponding
to the inner nodes of the Δ tree. By providing the Δ tree with additional
information we can reduce this task to (colored) tree canonization.

Lemma 5.1. Given an interval matrix λ and its Δ tree T ′, for each inner
node U of T ′ the following can be computed in logspace:
– The quotient λ[U] of λ at U .
– All possible interval models of λ[U] (either only one, or two that are the

reverse of each other).
– For each interval model MU of λ[U], the possible correspondences of the

children of U to the intervals in MU . This can either be arbitrary, a fixed
mapping or one of two fixed mappings.

Proof. Computing λ[U] is clearly possible in logspace.
If U is a prime node, the edges of Gov,di between the children of U are in

the same Δ color class by Lemma 4.5. Thus each of the two corresponding
Δ implication classes, when restricted to edges present in λ[U], defines an
orientation of all Gov,di edges in λ[U]. By Lemma 4.3, this must be an interval
orientation if λ is interval. By Lemma 4.1, it can be converted to an interval
representation of λ[U]. As the two Δ implication classes are the transpose of
each other, the two resulting interval models of λ[U] are the reverse of each other.
If they are the same, U is called symmetric and two mappings of the children
of U to the intervals in the model are possible; otherwise only one.

If U is a degenerate node, the model of λ[U] is uniquely determined by the
node type and the number of children. If U is of type overlap or of type disjoint,
the mapping of the children of U to the intervals is arbitrary. If U is of type
containment, the mapping from the children to the intervals is fixed. These
constructions are clearly possible in logspace. ut

Definition 5.2. Given an intersection matrix λ, the colored Δ tree T(λ) has
the same nodes as the Δ tree (i.e., the strong Δ modules of λ that are not
overlapped by another Δ module), plus three additional nodes loU ,miU ,hiU for
each inner node U that admits exactly two assignments of its children to the
interval model of its quotient matrix (cf. Lemma 5.1); these nodes are inserted
between U and its children. Each Δ tree node U receives a tuple (pU ,MU) as
color, where MU is the interval model of the quotient λ[U] given by Lemma 5.1

Helly Circular-Arc Graph Isomorphism Is in Logspace 13

(if there are two different models, take the smaller one), and pU is the position
of U among the children of its parent: If U is the root or if the parent of U
admits an arbitrary mapping of its children to its quotient intervals, let pU = 0.
If the parent of U has a fixed assignment of its children to its intervals, let pU
be the position of the interval corresponding to U among the other intervals. If
the parent of U allows two assignments of its children, let pU,1 and pU,2 be the
positions of U under the two assignments, respectively. If pU,1 < pU,2, make U a
child of loU and define pU = (pU,1, pU,2); if pU,1 = pU,2, make U a child of miU
and define pU = (pU,1, pU,2); if pU,1 > pU,2, make U a child of hiU and define
pU = (pU,2, pU,1). Finally, color all loU and hiU nodes with 0 and all miU nodes
with 1.

By Theorem 4.8 and Lemma 5.1, T(λ) can be computed in logspace.

Lemma 5.3. If λ and λ′ are isomorphic interval matrices, then T(λ) ∼= T(λ′).

Proof. Let ϕ be an isomorphism between λ and λ′, i.e., λu,v = λ′ϕ(u),ϕ(v) for
all u and v. Then ϕ induces a bijection between the Δ modules of λ and the
Δ modules of λ′ that gives an isomorphism between the Δ trees. Additionally,
for each node U in the Δ tree of λ, the quotient matrices are isomorphic, i.e.,
λ[U] ∼= λ′[ϕ(U)], via the appropriate restriction of ϕ. This implies that the models
chosen as colors are equal, i.e., MU = Mϕ(U). It also implies equal positions
pU = pϕ(U): This is immediate if U is the root, or if its parent is a degenerate
node or a prime node with two different interval models. If the parent of U
is a prime node with a symmetric interval model, the two linear orders on its
children might be exchanged. Depending on whether this is the case, ϕ can
either be extended with loU 7→ loϕ(U),miU 7→ miϕ(U),hiU 7→ hiϕ(U) or with
loU 7→ hiϕ(U),miU 7→ miϕ(U),hiU 7→ loϕ(U) to obtain an isomorphism between
T(λ) and T(λ′). ut

Lemma 5.4. Let λ be an interval matrix. Given an isomorphic copy T ′ of T(λ),
an isomorphic copy λ′ of λ (that depends only on T ′) can be computed in logspace.
When also given an isomorphism ` : T(λ)→ T ′, an isomorphism ϕ : λ→ λ′ can
be computed within the same space bound.

Proof. Let V ′ be the leaves of T ′; take V ′ as the vertices of λ′ in the order they
appear in the given representation of T ′. As the leaves of T(λ) correspond to the
vertices of λ, the tree isomorphism ` defines a mapping of the vertices V of λ
to V ′; take this mapping as ϕ.

Let U ′ be an inner node of T ′ that does not have color 0 or 1, i.e., that is not
the image of a lo, mi or hi node. Let U = `−1(U ′) be the node of T(λ) that gets
mapped to U ′. The color of U ′ specifies an interval model MU of the quotient
of λ at U . Let λ′[U ′] be the interval intersection matrix of MU ; it can easily be
computed in logspace. By construction, λ′[U ′] is isomorphic to the quotient λ[U]
of λ at U . It suffices to compute an assignment aU ′ of the children of U ′ to the
intervals in MU (and thus to the vertices of λ′[U ′]), such that for all children
U1, U2 of U it holds that λ[U]U1,U2 = λ′[U ′]aU′ (`(U1)),aU′ (`(U2)). Then, for any two

14 Johannes Köbler, Sebastian Kuhnert, and Oleg Verbitsky

leaves u′, v′ ∈ V ′, let U ′(u′, v′) denote the least common ancestor of u′ and v′
in T ′; the matrix entry λ′u′,v′ can be computed as the entry in λ′[U ′(u′, v′)] of
the children of U ′(u′, v′) which are the ancestors of u′ and v′, respectively.

To compute the mapping aU ′ , look at the positions of the children of U ′,
which are available from their colors:
– If the children of U ′ all have position 0, then U is an overlap or disjoint

node, and λ′[U ′] contains pairwise ov or di entries, respectively. This implies
that the assignment aU ′ of the children of U ′ to the intervals in MU can
be arbitrary. Define aU ′ so that it preserves the order of the children, i.e.,
aU ′(U ′1) < aU ′(U ′2) whenever U ′1 < U ′2 in the given representation of T ′.

– If the children of U ′ have pairwise different positions, then U is either a
containment node or an asymmetric prime node. In either case, the positions
allow to reconstruct the unique assignment: Choose aU ′ as the function that
satisfies aU ′(U ′1) < aU ′(U ′2) whenever the positions p1 and p2 of U ′1 and U ′2
satisfy p1 < p2.

– If U ′ has three children, of which two have color 0 and one has color 1, then let
miU ′ be the child with color 1 and let loU ′ and hiU ′ be the children with color 0
such that loU ′ < hiU ′ in the given representation of T ′. Note that `(miU) =
miU ′ and `({loU ,hiU}) = {loU ′ ,hiU ′}. For the children of loU ′ and miU ′ , use
the first entry in the position tuple and for the children of hiU ′ use the second
entry in the position tuple and proceed as in the previous case. This results
in one of the two possible assignments. ut

Theorem 5.5. The canonical representation problem for interval matrices can
be solved in logspace.

Proof. The algorithm works as follows:
1. Compute the Δ tree of λ (see Theorem 4.8).
2. Compute interval models of the quotient matrices at the nodes of the Δ tree

to obtain the colored Δ tree T(λ) (see Lemma 5.1 and Definition 5.2).
3. Compute a canonical labeling of T(λ) and use the algorithm of Lemma 5.4

to compute a canonical copy λ′ of λ and a canonical labeling ϕ of λ.
4. Compute the Δ tree of λ′ and interval orderings for the quotient matrices

at its inner nodes (in fact, the information from T(λ) can be reused; only
the assignment of children needs to be revisited). Combine these orientations
into one for the whole matrix (see Lemma 4.7) and convert it into an
interval representation ρ′ of λ′ (see Lemma 4.1). Combined with the canonical
labeling ϕ of λ, this results in an interval representation ρ = ρ′ ◦ ϕ of λ.

Note that λ′ depends only on the canon of T(λ), so λ1 ∼= λ2 implies λ′1 = λ′2. As ρ′
depends only on λ′, the resulting interval model ρ(λ) = ρ′(λ′) is canonical. ut

6 Conclusion

Our algorithms also allow recognition of HCA graphs: If the input graph does
not belong to this class, either one of the steps will fail (e.g. finding a suitable
maxclique M), or the resulting arcs will not be a representation of G (which can

Helly Circular-Arc Graph Isomorphism Is in Logspace 15

easily be checked), or the resulting arcs are not Helly. The latter can be checked
in logspace using [JLMSS11].

We remark that by combining Theorem 3.3 and Corollary 4.9 we already get a
logspace algorithm that computes for any given HCA graph G an HCA represen-
tation of G. Since any HCA representation of G allows to compute all maxcliques
in logspace, we can reduce the canonical representation problem of HCA graphs
to that of CA hypergraphs HG: the vertex set of HG consists of all maxcliques
of G and for each vertex v ∈ V (G), HG contains a hyperedge consisting of all
maxcliques that contain v. It is known that a graph G is HCA if and only if HG
is a CA hypergraph [Gav74]. Moreover, the hypergraph HG provides a canonical
HCA model for G, if we order its maxcliques by a canonical circular ordering.
Hence an alternative canonical representation algorithm for HCA graphs can be
obtained by using the algorithm for computing a canonical CA model of HG given
in [KKV12pca]. However, we believe that finding canonical representations of
interval matrices is of independent interest, as these allow additional constraints
on the structure of the intervals compared to interval graphs. For a different
kind of constraint, namely prescribing the lengths of pairwise intersections (and
optionally interval lengths), both logspace and O(nm) time (resp. linear time)
algorithms are known [KKW12].

Bibliography

	Helly Circular-Arc Graph Isomorphism Is in Logspace
	Introduction
	Preliminaries
	Transforming HCA Matrices into Interval Matrices
	Finding Representations of Interval Matrices in Logspace
	Finding Canonical Representations for Interval Matrices
	Conclusion

