
Efficient Edge-Finding on
Unary Resources with Optional Activities

Revised and Extended Version

Sebastian Kuhnert

Humboldt-Universität zu Berlin, Institut für Informatik
Unter den Linden 6, 10099 Berlin, Germany

kuhnert@informatik.hu-berlin.de

Abstract. Unary resources play a central role in modelling scheduling
problems. Edge-finding is one of the most popular techniques to deal
with unary resources in constraint programming environments. Often it
depends on external factors if an activity will be included in the final
schedule, making the activity optional. Currently known edge-finding
algorithms cannot take optional activities into account. This paper intro-
duces an edge-finding algorithm that finds restrictions for enabled and
optional activities. The performance of this new algorithm is studied for
modified job-shop and random-placement problems.

Keywords: constraint-based scheduling, global constraints, optional
tasks and activities, unary resources

1 Unary Resources with Optional Activities

Many everyday scheduling problems deal with allocation of resources: Schools
must assign rooms to lectures, factories must assign machines to tasks, train
companies must assign tracks to trains. These problems are of high combinatorial
complexity: For most of them there is no known polynomial time algorithm to
find an optimal solution. Constraint programming offers a way to solve many
instances of these problems in acceptable time [1].

Often an activity on a resource must be finished before a deadline and cannot
be started before a release time. In this paper the following formalisation of
scheduling problems is used: An activity (or task) i is described by its duration
pi and its earliest and latest starting and completion times (abbreviated as
esti, lsti, ecti, lcti, respectively) as shown in Fig. 1. In constraint programming
systems the start time is usually stored as a variable ranging from esti to lsti.
The duration is constant in most applications; in this case the completion times
can be derived as ecti = esti+pi and lcti = lsti+pi. Otherwise let pi denote
the minimum duration for the purposes of this paper.1

1 The values of pi are used to restrict the domains of other variables. Using larger
values than the minimum duration might cause unwarranted restrictions.



Efficient Edge-Finding on Unary Resources with Optional Activities 39

t

i

esti lsti ecti lcti

pi

Fig. 1. Attributes of an activity i

Often sets Θ of activities are considered. The notions of production time and
earliest starting time easily generalise to this case:

pΘ :=
∑
i∈Θ

pi estΘ := min{esti | i ∈ Θ}

For Θ = ∅ define p∅ := 0 and est∅ := −∞.
A resource is called unary resource, if it can process only one activity at

once and tasks cannot be interrupted. Now consider the following problem: Is
there a valid schedule for a unary resource that includes all activities of a given
set T , i. e. can the activities be assigned pairwise disjoint time periods satisfying
the constraints given by the respective esti, lsti, pi, ecti and lsti? See Fig. 2 for
a sample instance. When the set T of activities grows, the number of possibilities
to order them grows exponentially; it is long known that the unary resource
scheduling problem is NP-complete [4, p. 236]. In constraint programming, the
number of considered activity orderings is reduced in the following way: For each
possible ordering of activities i and j (i before j or j before i), restrictions for
the placement of other activities are derived before any other ordering decision is
made. The process of searching for such restrictions is called filtering. Whenever
a restriction is found, values can be removed from the domains of the variables
describing the restricted activity. The goal of filtering is to reduce the number of
ordering choices and to make the overall process of finding a solution faster. For
this reason filtering algorithms should run fast and find as many restrictions as
possible. On the other hand each restriction must be justified, i. e. there must not
exist any solution with the removed values. In some cases filtering can find so
many restrictions that the domain of a variable becomes empty, i. e. no possible
schedule remains. This is called an inconsistency and causes backtracking in the
search for possible orderings.

This work deals with optional activities on unary resources. These are tasks
for which it is not yet known if they should be included in the final schedule:

t

T

Fig. 2. A valid schedule for the unary resource with the tasks in T



40 Sebastian Kuhnert

E. g. when one specific task has to be performed once but several resources
could do it. In this case optional activities are added to each resource, with the
additional constraint that exactly one of them should be included in the final
schedule.

Optional activities are modelled by adding another attribute: The variable
statusi can take the values 1 for enabled and 0 for disabled. The domain {0, 1}
thus indicates an optional task. Additionally, let Tenabled, Toptional and Tdisabled

denote the partition of T into the enabled, optional and disabled tasks.
Optional activities entail additional difficulties for constraint filtering algo-

rithms: As optional activities might become disabled later, they may not influence
any other activity, because the resulting restrictions would not be justified. How-
ever, it is possible to detect if the inclusion of an optional activity causes an
overload on an otherwise non-overloaded unary resource. In this case it is possible
to disable this optional task. Doing this as often as possible while still maintain-
ing fast filtering times is a desirable way to speed up the overall search process,
because fewer ordering choices have to be enumerated later.

Several standard filtering algorithms for unary resources have been extended
for optional activities by Vilím, Barták and Čepek [7]. To the best of the author’s
knowledge, no edge-finding algorithm has been proposed so far that considers
optional activities. This paper aims to fill this gap.

2 Edge-Finding

There are two variants of edge-finding: One restricts the earliest starting times,
the other restricts the latest completion times of the tasks on a unary resource.
This paper only presents the former one, as the latter is symmetric to it.

To state the edge-finding rule and the algorithm, the following notational
abbreviations are needed. Given a set Θ of n tasks, ECT(Θ) is a lower bound of
the earliest completion time of all tasks in Θ:

ECT(Θ) := max
Θ′⊆Θ

{estΘ′ + pΘ′} (1)

Θ

tECT(Θ) ectΘ≤
(a) ECT(Θ) assumes this invalid

schedule is possible

Θ

tECT(Θ) ectΘ≤gap

(b) The best possible schedule includes a
gap, resulting in ectΘ > ECT(Θ)

Fig. 3. ECT(Θ) can underestimate the real earliest completion time ectΘ



Efficient Edge-Finding on Unary Resources with Optional Activities 41

The definition of ECT(Θ) ignores gaps that may be necessary for a valid
schedule, as illustrated in Fig. 3. This simplification results in weaker domain
restrictions, but makes the computation of ECT(Θ) feasible in the first place.2

Vilím has shown how the value ECT(Θ) can be computed using a so-called
Θ-tree [6], that has O(log n) overhead for adding or removing tasks from Θ and
offers constant time access to this value in return.

Later, extended this data structure was extended by Vilím, Barták and Čepek
to Θ-Λ-trees. They retain the time complexity and include up to one task from
an additional set Λ (disjoint from Θ), such that ECT(Θ,Λ), the lower bound of
the earliest completion time, becomes maximal [7]:

ECT(Θ,Λ) := max
j∈Λ
{ECT(Θ ∪ {j})} (1)

= max
j∈Λ

{
max

Θ′⊆Θ∪{j}
{estΘ′ + pΘ′}

}
(2)

The purpose of this extension is to choose, for a given set Θ, one activity j ∈ Λ
such that ECT(Θ ∪ {j}) becomes maximal. This is needed to efficiently find all
applications of the edge-finding rule given below.

To handle optional activities, another extension is needed: The maximum
(lower bound of the) earliest completion time for the tasks in Θ plus exactly
one task from Ω plus up to one task from Λ (where Θ, Ω and Λ are pairwise
disjoint):

ECT(Θ,Ω,Λ) := max
o∈Ω

{
max
j∈Λ

{
max

Θ′⊆Θ∪{j}

{
estΘ′∪{o}+ pΘ′∪{o}

}}}
(3)

As the algorithm presented below calculates the third argument to ECT(Θ,Ω,Λ)
dynamically,3 this value cannot be pre-computed using a tree structure. Instead,
a loop over all tasks is needed, yielding O(n) time complexity. This loop iterates
over all tasks j ∈ T , pre-sorted by their earliest starting time estj , and keeps
track of the earliest completion time of the tasks processed so far. To achieve
this, a fact about partitions of task sets is used:

Definition 1 (Partition at an earliest starting time). Given a set T of
tasks, a pair of sets (L,R) is called partition of T at the earliest starting time t0,
iff (L,R) is a partition of T (i. e. L∪R = T , L∩R = ∅) that fulfils the following
two conditions: ∀l ∈ L : estl ≤ t0 and ∀r ∈ R : estr ≥ t0.
Proposition 1 (Calculation of ECT4). Given a set T of tasks, and a partition
(L,R) of T at an arbitrary earliest starting time, the following holds:

ECT(T ) = max
{

ECT(R),ECT(L) +
∑
j∈R

pj
}

2 If the exact earliest completion time ectΘ of Θ could be calculated in polynomial
time, the NP-complete problem “is there a valid schedule for this set of tasks” could
be decided in polynomial time as well.

3 The membership in Λ is not stored in memory, but decided by evaluating a condition.
This also applies to one occurrence of ECT(Θ,Λ).

4 This is a variant of a proposition proven by Vilím, Barták and Čepek [7, p. 405] that
was originally stated for left and right subtrees in a Θ-tree. The proof given there
directly carries over to this proposition.



42 Sebastian Kuhnert

When iterating over the tasks j ∈ T , let L be the set of tasks considered so
far (thus ECT(L) is known5) and R := {j} the set containing only the current
activity (for which ECT(R) = ectj is also known). Furthermore let L′ := L∪ {j}
denote the set of activities considered after the current iteration. This way L
grows from the empty set until it includes all activities in T . To compute not only
ECT(Θ) but ECT(Θ,Ω,Λ) on the basis of Proposition 1, the following values
must be updated in the loop for each task j that is considered:

1. (The lower bound of) the earliest completion time of the Θ-activities only,
i. e. ECT(L′ ∩Θ):

ectL′ :=

{
max{ectL + pj , ectj} if j ∈ Θ
ectL otherwise

2. (The lower bound of) the earliest completion time when including up to one
Λ-activity, i. e. ECT(L′ ∩Θ,L′ ∩ Λ):

ectlL′ :=


max{ectlL + pj , ectj} if j ∈ Θ
max{ectlL, ectj , ectL + pj} if j ∈ Λ
ectl otherwise

3. (The lower bound of) the earliest completion time when including exactly
one Ω-activity (provided there is one), i. e. ECT(L′ ∩Θ,L′ ∩Ω, ∅):

ectoL′ :=



max{ectoL + pj , ectj} if j ∈ Θ ∧Ω ∩ L = ∅
ectoL + pj if j ∈ Θ ∧Ω ∩ L 6= ∅
max{ectj , ectL + pj} if j ∈ Ω ∧Ω ∩ L = ∅
max{ectj , ectL + pj , ectoL} if j ∈ Ω ∧Ω ∩ L 6= ∅
ectoL otherwise

4. (The lower bound of) the earliest completion time when including up to one
Λ- and exactly one Ω-activity (provided there is one),
i. e. ECT(L′ ∩Θ,L′ ∩Ω,L′ ∩ Λ):

ectolL′ :=



max{ectolL + pj , ectj} if j ∈ Θ ∧Ω ∩ L = ∅
ectolL + pj if j ∈ Θ ∧Ω ∩ L 6= ∅
max{ectj , ectL + pj , ectlL + pj} if j ∈ Ω ∧Ω ∩ L = ∅
max{ectj , ectL + pj , ectlL + pj , ectolL} if j ∈ Ω ∧Ω ∩ L 6= ∅
max{ectolL, ectoL + pj , ectj} if j ∈ Λ ∧Ω ∩ L = ∅
max{ectolL, ectoL + pj} if j ∈ Λ ∧Ω ∩ L 6= ∅
ectolL otherwise

5 For L = ∅ define ECT(∅) := −∞



Efficient Edge-Finding on Unary Resources with Optional Activities 43

After the last iteration (i. e. L′ = T ) ectolL′ = ECT(L′ ∩Θ,L′ ∩Λ,L′ ∩Ω) =
ECT(Θ,Ω,Λ) contains the result of the computation.

Note that the indices of ectL, ectlL, ectlL and ectolL are only added for
conceptual clarity. If the values are updated in the right order (i. e. ectolL first
and ectL last), only plain variables ect, ectl, ecto and ectol (and no arrays) are
needed.

Finally, one more notational abbreviation is needed to state the edge-finding
rule: The set of all tasks in a set T (usually all tasks or all enabled tasks of a
resource), that end not later than a given task j:

Θ(j, T ) := {k ∈ T | lctk ≤ lctj} (4)

Notice the overloading of Θ; the return value of the function Θ corresponds
to value of the set Θ at the time when j is processed in the main loop of the
algorithm introduced later.

Rule 1 (Edge-Finding) For all tasks j ∈ T and i ∈ T \Θ(j, T ) holds: If

ECT(Θ(j, T ) ∪ {i}) > lctj (5)

then i must be scheduled after all activities in Θ(j, T ), i. e. the following restriction
is justified:

esti ← max{esti,ECT(Θ(j, T ))} (6)

This form of the edge-finding rule was introduced by Vilím, Barták and
Čepek [7, p. 412ff] and proven equivalent to the more traditional form. The idea
behind this rule is to detect if an activity i has to be the last one within the
set Θ(j, T ) ∪ {i}. This is ensured by the precondition (5) of the rule, which is
illustrated in Fig. 4(a): As the latest completion time lctj is by (4) also the latest
completion time of Θ(j, T ), the precondition states that Θ(j, T ) must be finished
before Θ(j, T ) ∪ {i} can be finished.

The resulting restriction (6), which is illustrated in Fig. 4(b), ensures that i
is not started until all activities in Θ(j, T ) can be finished.

lctj

ECT(Θ(j, T ) ∪ {i})

j

Θ(j, T )

i

t

(a) The rule is applicable for j and i:
ECT(Θ(j, T ) ∪ {i}) > lctj

ECT(Θ(j, T ))

j

Θ(j, T )

i

t

(b) After the application esti is at least
ECT(Θ(j, T ))

Fig. 4. An application of the edge-finding rule



44 Sebastian Kuhnert

Besides the edge-finding rule, the presented edge-finding algorithm makes use
of the following overload rule, that can be checked along the way without much
overhead:

Rule 2 (Overload) For all j ∈ T holds: If ECT(Θ(j, T )) > lctj then an over-
load has occurred, i. e. it is not possible to schedule all activities in T without
conflict.

This rule is illustrated in Fig. 5. The intuition for the overload rule is that the
tasks in Θ(j, T ) cannot possibly be finished before they have to.

lctΘ(j,T ) ECT(Θ(j, T ))

j

Θ(j, T )

t

Fig. 5. An application of the overload rule

2.1 Edge-Finding Algorithm

Now to the central algorithm of this article: Listing 1 shows a program that
finds all applications of the edge-finding rule to the set of enabled tasks and
furthermore disables optional tasks whose inclusion would cause an overload (i. e.
esti could be raised to a value greater than lsti for some task i).

Throughout the repeat-loop the set Θ is updated to reflect Θ(j, Tenabled) and
Ω is updated to reflect Θ(j, Toptional) – exceptions are only allowed if multiple
tasks have the same lct value. As j iterates over Q, lctj decreases and j is removed
from Θ or Ω and added to Λ.

Lines 15 to 25 handle enabled activities j and correspond closely to the algo-
rithm by Vilím, Barták and Čepek [7, p. 416], with the only change being the
handling of statusi = optional in lines 20 to 24: If ECT(Θ) > lsti (line 21) holds,
the restriction est′i ← ECT(Θ) (line 24) would cause an inconsistency as no pos-
sible start time for i remains. In this case the activity i is set to disabled (line 22),
which fails for enabled activities and is the proper restriction for optional ones.

There are several more additions to handle optional activities: Firstly, the
case statusj = optional is handled. It follows the scheme of the enabled case,
bearing in mind that j is optional: The overload-condition ECT(Θ) > lctj on
line 15 carries over to ECT(Θ ∪ {j}) > lctj on line 39, where no immediate
failure is generated but the optional activity j which would cause the overload is
disabled.

If j is optional, the condition ECT(Θ,Λ) > lctj of the while-loop on line 18
can only result in the disabling of j as no optional activity may influence others.
For this, no while-loop is required and a simple if-condition suffices. It must
however take care to choose an appropriate i ∈ Λ that leads to j being disabled.
This is achieved by requiring i ∈ Tenabled and lsti < ECT(Θ∪{j}) in the condition
on line 40.



Efficient Edge-Finding on Unary Resources with Optional Activities 45

Listing 1. Edge-finding algorithm.
1 input: activities T on a unary resource
2 // read-write access to esti, lsti, lcti, statusi is assumed for all i ∈ T
3 for i ∈ T do // cache changes to esti: changing it directly would mess up Θ-Λ-trees
4 est′

i ← esti
5
6 (Θ,Ω,Λ)← (Tenabled, Toptional, ∅) // initialise tree(s)
7 Q ← queue of all non-disabled j ∈ T \ Tdisabled in descending order of lctj
8 j ← Q.first // go to the first task in Q
9 repeat

10 if statusj 6= disabled then // move j to Λ
11 (Θ,Ω,Λ)← (Θ \ {j}, Ω \ {j}, Λ ∪ {j})
12 Q.dequeue; j ← Q.first // go to the next task in Q
13
14 if statusj = enabled then
15 if ECT(Θ) > lctj then
16 fail // because overload rule (Rule 2) applies
17
18 while ECT(Θ,Λ) > lctj do
19 i ← the Λ-activity responsible for ECT(Θ,Λ)
20 if ECT(Θ) > esti then // edge-finding rule is applicable
21 if ECT(Θ) > lsti then // inconsistency detected
22 statusi ← disabled // fails if i is enabled
23 else // apply edge-finding rule
24 est′

i ← ECT(Θ) // ECT(Θ) > esti already ensured
25 Λ← Λ \ {i} // no better restriction for i possible [7, p. 416]
26
27 while ECT(Θ,Ω) > lctj do // overload rule applies
28 o ← the Ω-activity responsible for ECT(Θ,Ω)
29 statuso ← disabled
30 Ω ← Ω \ {o}
31
32 while Ω 6= ∅ and ECT(Θ,Ω,Λ′(o)) > lctj do // Λ′(o) is defined in (7)
33 // edge-finding rule detects overload
34 o ← the Ω-activity responsible for ECT(Θ,Ω, . . .)
35 // already used in line 32 with that meaning
36 statuso ← disabled
37 Ω ← Ω \ {o}
38 else if statusj = optional then
39 if ECT(Θ ∪ {j}) > lctj // overload rule applicable . . .
40 or ECT(Θ ∪ {j}, {i ∈ Tenabled \Θ | lsti < ECT(Θ ∪ {j})}) > lctj
41 then // . . . or edge-finding rule detects overload
42 statusj ← disabled
43 Ω ← Ω \ {j} // no more restrictions for j possible
44 until the end of Q is reached
45
46 for i ∈ T do
47 esti ← est′

i // apply cached changes



46 Sebastian Kuhnert

Secondly, the case statusj = enabled is extended with two more while-loops.
They realise overload-detection and edge-finding for optional activities that are
still contained in Ω. The set Λ′(o), which is used in the condition of the second
while-loop (line 32), is defined as follows (with Tenabled and Θ taken from the
context where Λ′(o) is evaluated):

Λ′(o) :=
{
i ∈ Tenabled \Θ

∣∣∣ lsti < ECT(Θ ∪ {o})

∧ 6∃ i2 ∈ Tenabled \Θ :
(

lsti2 ≥ ECT(Θ ∪ {o})

∧ ECT(Θ ∪ {i2}) > ECT(Θ ∪ {i})
)}

(7)

Like for the algorithm by Vilím, Barták and Čepek, the algorithm in Listing 1
must be repeated until it finds no further restrictions to make it idempotent.
This issue is addressed by Listing 2 in Sect. 3 below.

Proposition 2 (Correctness). The algorithm presented in Listing 1 is correct,
i. e. all restrictions are justified.

Proof. All restrictions are applications of the edge-finding and overload rules
(Rules 1 and 2). It remains to be shown that the preconditions of the rules are
met each time they are applied. This directly follows from the way the algorithm
updates its data structures. As a simple example, consider the application of the
overload rule in line 16. Remember that Θ = Θ(j, Tenabled). With the conditions in
the preceding lines j ∈ Tenabled and the precondition ECT(Θ(j, Tenabled)) > lctj
is fulfilled.

For a more complicated case consider the disabling of the task o in line 36:
This restriction is based on the edge-finding rule and that o is an optional
activity. Remember that Θ = Θ(j, Tenabled) and o ∈ Ω = Θ(j, Toptional). Define
T ′ := Tenabled ∪ {o}. The activity i chosen from Λ′(o) satisfies i ∈ Tenabled \Θ by
(7). This implies i ∈ T ′ \Θ. It holds that

ECT(Θ,Ω,Λ′(o)) = ECT(Θ(j, T ′) ∪ {i}) .
Together with the condition on the enclosing while loop this means that the
precondition of the edge-finding rule is satisfied. From (7) also follows that
lsti < ECT(Θ ∪ {o}) = ECT(Θ(j, T ′)). This implies that the restriction of the
edge-finding rule, if carried out, would lead to i having no possible start times
left, i. e. an inconsistency would occur. As o is the only optional activity involved
in this inconsistency, o cannot be included in a correct schedule and disabling it
is correct.

The proofs for the other restrictions are similar. ut

2.2 Complexity

Proposition 3 (Time Complexity). The time complexity of the edge-finding
algorithm presented in Listing 1 is O(n2), where n is the number of activities on
the unary resource.



Efficient Edge-Finding on Unary Resources with Optional Activities 47

Proof. To see this, observe that each loop is executed at most n times: The two
small copy-loops in lines 3–4 and 46–47 directly loop over all tasks, the main loop
in lines 14–44 loops over the subset of non-disabled tasks and the three inner
loops in lines 18–25, 27–30 and 32–37 each remove a task from Λ or Ω. As each
task is added to these sets at most once, each loop is executed at most n times.

Sorting the tasks by lct (line 7) can be done in O(n log n). All other lines
(this includes all lines within the loops) bear at most O(n) complexity. Most are
O(1), the more complicated ones are O(log n) or O(n), as discussed for (1) to
(3) at the beginning of Sect. 2.

Only the calculation of ECT(Θ,Ω,Λ′(o)) in line 32 needs special consideration,
as o already references the task chosen from Ω. The definition of Λ′(o) in (7)
makes it possible to calculate it in the following way:

– When calculating ectlL′ take all activities from Tenabled \Θ in account, as it
is not yet known which o will be chosen.

– For the cases with j ∈ Ω during the calculation of ectolL′ , consider ectlL+pj
for calculating the maximum only if the activity i chosen for ectlL satisfies
lsti < ECT(Θ ∪ {j}).

– For the cases with j ∈ Λ during the calculation of ectolL′ , consider ectoL+pj
for the maximum only if the activity o chosen for ectoL satisfies lstj <
ECT(Θ ∪ {o}).

To be able to access ECT(Θ ∪ {o}) in constant time for all o ∈ Ω, three arrays
ectAftero, pAftero and ectBeforeo can be used, where after/before refers to the
position of o in the list of tasks sorted by estj and the three values consider only
tasks from Θ. They can be computed based on Proposition 1 in linear time by
looping over the tasks pre-sorted by estj . It holds:

ECT(Θ ∪ {o}) = max{ectAftero, ecto +pAftero, ectBeforeo + po +pAftero}

Thus the overall time complexity of the algorithm is O(n2). ut
Proposition 4 (Space Complexity). The space complexity of the edge-finding
algorithm presented in Listing 1 is O(n), where n is the number of activities on
the unary resource.

Proof. The algorithm uses only tree and list structures. Both have linear memory
requirements. ut

2.3 Optimality

For efficient restriction of the domains it is necessary that as many applications
of the edge-finding rule as possible are found by the algorithm, while it is equally
crucial that it offers fast runtimes.

Proposition 5 (Optimality). The algorithm presented in Listing 1 finds all
applications of the edge-finding rule to enabled activities and disables almost
all optional activities that would cause an overload that is detectable by the
edge-finding rule.



48 Sebastian Kuhnert

Proof. First consider all applications of the edge-finding rule that involve only
enabled tasks. Let therefore j ∈ Tenabled and i ∈ Tenabled \ Θ(j, Tenabled), such
that ECT(Θ(j, Tenabled) ∪ {i}) < lctj . As argued above, the set Θ at some point
takes the value of Θ(j, Tenabled) and i is contained in Λ. Then in line 20 i will
be chosen (possibly after other i′ that feature a larger ECT(Θ ∪ {i′}) have been
chosen and removed from Λ) and esti will be adjusted or an overload detected.

If an optional activity o ∈ Toptional is involved, things are a bit more compli-
cated. If the edge-finding rule is applicable for the set T ′ := Tenabled ∪ {o}, the
following cases can occur:

Case 1: o 6∈ Θ(j, T ′) ∪ {i}
The optional activity o is not involved and the edge-finding rule is equally ap-
plicable to the set Tenabled. The resulting restriction is found by the algorithm
as argued above.

Case 2: o = i
This case is handled together with non-optional i in lines 18 to 25.

Case 3: o = j
In this case esti may not be adjusted as the optional activity o may not
influence the non-optional i. However, if esti can be adjusted to a value
greater than lsti, the inclusion of o would cause an overload and o can be
disabled. This is done in lines 38 to 43.

Case 4: o ∈ Θ(j, T ′) \ {j}
Like in the previous case the only possible restriction is disabling o if it causes
an overload. This case is handled in lines 32 to 37. For optimal results Λ′(o)
would have to be defined slightly differently, omitting the condition

6 ∃ i2 ∈ Tenabled\Θ :
(

lsti2 ≥ ECT(Θ∪{o})∧ECT(Θ∪{i2}) > ECT(Θ∪{i})
)
.

However, this would destroy the O(n2) complexity of the algorithm. As this
case never occurs for any of the problem instances measured in the next
section, omitting these restrictions appears to be a good choice. ut

3 Comparison with Other Edge-Finding Algorithms

The presented algorithm has been implemented for the Java constraint pro-
gramming library firstcs [5] and compared to other algorithms. The following
algorithms were considered:

New algorithm: The algorithm presented in Listing 1. It finds almost all
possible applications of the edge-finding rule in O(n2) time.

Simplified algorithm: Similar to the previous algorithm but without the loop
in lines 32 to 37. This saves one of the two most expensive computations,
though the asymptotic time complexity is still O(n2). Fewer restrictions are
found.



Efficient Edge-Finding on Unary Resources with Optional Activities 49

Active-only algorithm: The algorithm presented by Vilím, Barták and Če-
pek [7, p. 416]. It runs at O(n log n) time complexity but takes no optional
tasks into account.6

Iterative algorithm: Run the active-only algorithm once on Tenabled and then
for each o ∈ Toptional on Tenabled ∪ {o}, adjusting or disabling o only. This
algorithm finds all restrictions to optional activities at the cost of O(n2 log n)
runtime.

To make these (and the other filtering algorithms, taken from [7]) idempotent,
the fix-point technique of Listing 2 was used.

Listing 2. Fix-point iteration

1 repeat
2 repeat
3 repeat
6 filter based on detectable precedences
7 until no more restrictions are found
8 filter with not-first/not-last rule
9 until no more restrictions are found

10 filter with the edge-finding algorithm to be benchmarked
11 until no more restrictions are found

For some benchmarks mentioned later, additional overload checking was per-
formed by adding the following lines at the beginning of the innermost repeat-loop:

4 if overload detected then
5 fail

For now, this additional overload checking is skipped as all the studied edge-finding
algorithms include applications of the overload rule. This way the comparison
between the algorithms is more meaningful, as not only the differences in the
way the edge-finding rule is applied, but also those in the way the overload rule
is applied contribute to the results.

The search was performed using a modified resource-labelling technique. If
optional tasks are allowed, the value of enabledi has to be decided during the
labelling as well. Usually it is decided at each level in the search tree in which
order the corresponding pair of tasks i, j ∈ T is to be executed. These two
decisions were combined, so that the following alternatives are considered at each
level: (a) both enabled with i before j, (b) both enabled with i after j, (c) only i
enabled, (d) only j enabled or (e) both disabled.

6 Although this algorithm is presented in an article mentioning optional activities in
its title, it does not derive any restrictions from optional tasks. The reason it is listed
in that paper is probably that it shares the data structure used, namely Θ-Λ-trees,
with the other algorithms introduced there.



50 Sebastian Kuhnert

3.1 The Job-Shop Scheduling Problem

For benchmarking, -alt variants [7, p. 423] of job-shop problems [3] were used:
For each job, exactly one of the fifth and sixth task must be included for a
solution. All instances mentioned in this paper have 10 jobs each consisting of
10 tasks. This results in 10 machines with 10 tasks each. For the -alt instances
2 tasks per machine are initially optional on average. The last three instances
contain no optional tasks and are included for reference. All times are measured
in milliseconds and include finding a solution for the known optimal make-span
and proving that this make-span is indeed optimal.

Table 1 shows the results. The number of backtracking steps required is equal
for the new, the simplified and the iterative algorithm. So the new algorithm
looses none of the possible restrictions, even if the loop in lines 32 to 37 is left
out. When comparing the runtimes, the overhead of this loop is clearly visible:
The simplified variant saves time, as it has lower overhead.

The active-only algorithm needs more backtracking steps because it finds less
restrictions. Often the lower complexity compensates for this when it comes to
the runtimes and the active-only variant is slightly better than the simplified one.
The largest relative deviations is the other way around, though: For orb02-alt the
active-only algorithm is almost 30% slower than the simplified one, for la19-alt
it even needs 90% more time. These are also the instances with the largest
difference in backtracking steps. It obviously depends on the inner structure of
the job-shop instances (or the problems in general), if the higher time complexity
of the newly proposed algorithms is justified by the backtracking steps saved by
the additionally found restrictions.

Table 1. Runtime in milliseconds and number of backtracks for the different
algorithms and job-shop-scheduling instances

new simplified active-only iterative

instance time bt time bt time bt time bt

abz5-alt 4843 5859 4484 5859 4515 6441 4964 5859
orb01-alt 55747 56344 53662 56344 49361 56964 57013 56344
orb02-alt 7800 7265 7394 7265 9590 10610 7609 7265
orb07-alt 81856 99471 79063 99471 78309 104201 79786 99471
orb10-alt 136 85 125 85 121 85 132 85
la16-alt 7269 8294 6886 8294 6593 8841 7241 8294
la17-alt 46 9 31 9 35 11 31 9
la18-alt 26780 26846 25147 26846 24877 29039 25897 26846
la19-alt 2566 2022 2406 2022 4609 4632 2574 2022
la20-alt 62 53 63 53 55 53 62 53

abz5 5863 5107 5863 5107 5587 5107 5570 5107
orb01 29612 21569 29706 21569 28198 21569 28336 21569
orb02 10144 7937 10187 7937 9644 7937 9687 7937



Efficient Edge-Finding on Unary Resources with Optional Activities 51

The runtime of the iterative algorithm is mostly better than the new, but
worse than the simplified algorithm.7 As the tested instances all have relatively
few optional activities per machine8 (which benefits the active-only and iterative
algorithms), it is interesting how the new algorithm performs for problems with
more activities and a higher proportion of optional ones.

3.2 The Random Placement Problem

One such problem is the random placement problem [2], which can be solved using
alternative resource constraints which in turn can be implemented using single
resources with optional activities [8]. The runtimes of the instances provided on
http://www.fi.muni.cz/~hanka/rpp/ that are solvable in less than ten minutes
are shown in Fig. 6.9

0

1000

2000

3000

4000

5000
time/ms

instances

80% 85% 90% 95% 100%Load:

iterativesimplified
active-onlynew

Fig. 6. Runtimes for instances of the Random-Placement-Problem, without
additional overload checking

It is obvious that the new algorithm is the fastest in this case. Surprisingly
the simplified algorithm is worse than the active-only one: Obviously it finds
no or not enough additional restrictions. The power of the new algorithm thus
derives from the loop omitted in the simplified one.10 The iterative algorithm
is the slowest, though it finds as many restrictions as the new one. The reason
is the higher asymptotic time complexity, which seems to be prohibitive even
7 An exception are the three last instances, which include no optional tasks.
8 As mentioned above, the machines each have 10 tasks, 20% are optional on average.
9 All algorithms need 0 backtracking steps, with the exception of the active-only
algorithm for one instance with 100% load. This instance is responsible for the one
peak going above even the iterative algorithm.

10 This is confirmed by the number of choices needed during search: For the iterative
and new algorithms it is always equal (the new one again looses no restrictions) and
averagely 407, but the active-only and simplified ones both need more than 620 on
average.

http://www.fi.muni.cz/~hanka/rpp/


52 Sebastian Kuhnert

for relatively small resources with 50 to 100 tasks which appear in the tested
random-placement instances.

So far only the fix-point algorithm without additional overload checking has
been considered. This has its justification in the fact that all measured edge-
finding algorithms perform overload-checking during their regular operation: By
omitting the additional overload check their filtering strength contributes more to
the results of the benchmark. In case of the job-shop benchmark, the additional
overload checking furthermore results in slower runtimes for all algorithms.
However, in case of the random placement benchmark, additional overload
checking can lead to performance improvements for some edge-finding algorithms.
This can be seen in Fig. 7: While the new and iterative algorithms loose 75 and
30 milliseconds, the active-only and simplified algorithms gain 990 and 1185
milliseconds averaged over the instances, overtaking the new algorithm. The
additional overload checking thus can compensate for weaker performance of an
edge-finding algorithm in this case.

0

1000

2000

3000

4000

5000
time/ms

instances

80% 85% 90% 95% 100%Load:

iterativesimplified
active-onlynew

Fig. 7. Runtimes for instances of the Random-Placement-Problem, with addi-
tional overload checking

4 Summary

This paper introduces a new edge-finding algorithm for unary resources. It deals
with optional activities correctly, finds all applications of the edge-finding rule to
the enabled activities and disables optional activities if they cause an overload
detected by the edge-finding rule. It is the first nontrivial edge-finding algorithm
that derives restrictions for optional activities. It outperforms the naive, iterative
implementation as soon as a larger fraction of optional activities is involved.

With O(n2) asymptotic time complexity it is slower than edge-finding algo-
rithms that cannot take optional activities into account. The additionally found
restrictions offer a significant reduction of the search decisions needed to find and
prove the solution of a problem. Especially for problems with many activities, of
which a high proportion is optional, this can lead to faster runtimes. Performing
additional overload checking can cancel this effect out, though.



Efficient Edge-Finding on Unary Resources with Optional Activities 53

Future work can study the influence of different labelling strategies when it
comes to optional activities: Is it better to first establish an order of tasks and
then decide which tasks should be enabled? Another possible direction for future
work is studying which edge-finding algorithm yields best results depending on
the problem structure, possibly implementing heuristics to decide which algorithm
to use.

References

1. Philippe Baptiste, Claude Le Pape, and Wim Nuijten. ‘Constraint-Based Schedul-
ing – Applying Constraint Programming to Scheduling Problems’. Boston: Kluwer
Academic Publishers, 2001. isbn 0792374088.

2. Roman Barták, Tomáš Müller and Hana Rudová. ‘A New Approach to Modeling and
Solving Minimal Perturbation Problems’. In: Recent Advances in Constraints, CSCLP
2003. LNCS 3010. Berlin: Springer, 2004. isbn 978-3-540-21834-0. Pp. 233–249.

3. Yves Colombani. ‘Constraint programming: an efficient and practical approach
to solving the job-shop problem’. In: Eugene C. Freuder, editor, Principles and
Practice of Constraint Programming – CP96. LNCS 1118. Berlin: Springer, 1996.
isbn 3-540-61551-2. Pp. 149–163.

4. Michael R. Garey and David S. Johnson. ‘Computers and Intractability – A Guide
to the Theory of NP-Completeness’. New York: W. H. Freeman, 1979. isbn 0-7167-
1045-5.

5. Matthias Hoche, Henry Müller, Hans Schlenker and Armin Wolf. ‘firstcs – A
Pure Java Constraint Programming Engine’. In: Michael Hanus, Petra Hofstedt
and Armin Wolf, editors, 2nd International Workshop on Multiparadigm Constraint
Programming Languages – MultiCPL’03, 29th September 2003. url: http://uebb.
cs.tu-berlin.de/MultiCPL03/Proceedings.MultiCPL03.RCoRP03.pdf.

6. Petr Vilím. ‘O(n logn) Filtering Algorithms for Unary Resource Constraint’. In:
Jean-Charles and Régin Michel Rueher, editors, Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems. LNCS 3011.
Berlin: Springer, 2004. isbn 978-3-540-21836-4. Pp. 335–347. url: http://kti.mff.
cuni.cz/~vilim/nlogn.pdf

7. Petr Vilím, Roman Barták and Ondřej Čepek. ‘Extension of O(n logn) Filtering
Algorithms for the Unary Resource Constraint to Optional Activities’. In: Constraints
10.4 (2005). Pp. 403–425. url: http://kti.mff.cuni.cz/~vilim/constraints2005.
pdf

8. Armin Wolf, and Hans Schlenker. ‘Realising the Alternative Resources Constraint’.
In: Applications of Declarative Programming and Knowledge Management, INAP
2004. LNCS 3392. Berlin: Springer, 2005. isbn 978-3-540-25560-4. Pp. 185–199.

http://uebb.cs.tu-berlin.de/MultiCPL03/Proceedings.MultiCPL03.RCoRP03.pdf
http://uebb.cs.tu-berlin.de/MultiCPL03/Proceedings.MultiCPL03.RCoRP03.pdf
http://kti.mff.cuni.cz/~vilim/nlogn.pdf
http://kti.mff.cuni.cz/~vilim/nlogn.pdf
http://kti.mff.cuni.cz/~vilim/constraints2005.pdf
http://kti.mff.cuni.cz/~vilim/constraints2005.pdf

